跳到主要內容

臺灣博碩士論文加值系統

(44.222.131.239) 您好!臺灣時間:2024/09/09 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭皓仁
研究生(外文):Hao-jen Cheng
論文名稱:兩段整合光注入式1.55μm高速半導體雷射
論文名稱(外文):High-Speed Two Sectional Integrated Optical Injection Semiconductor Lasers at 1.55μm Wavelength
指導教授:許晉瑋許晉瑋引用關係
指導教授(外文):J.-W. Shi
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:70
中文關鍵詞:光注入式高速半導體雷射
外文關鍵詞:semiconductor laseroptical injectionhigh speed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:1
在光纖通訊中,雷射的調制頻寬關係著資料量傳輸的速度,而光注入式鎖態雷射結構,擁有增加共振頻率的特性,然而其結構需要一支外部雷射注入,在實際應用上是非常麻煩的,因此我們提出兩段整合光注入式以InAlGaAs多重量子井的Fabry-Perot半導體雷射,此結構整合光注入式鎖態雷射結構,因此不需要額外的外部雷射注入,可以單一晶片封裝,且不需要光阻絕器或光循環器,也無對光的問題存在,此元件的共振頻率最高可以達到41GHz,在頻率響應上相對於無外部雷射注入時,直接調變的頻寬可以有兩倍的增加,達到20GHz的頻寬。
As the application of optical communication system, the modulation bandwidth of laser has great effect on data transmission speed. With the view of that, the laser with optical injection-locked structure is proposed to enhance speed performance by use of adding resonance frequencies in semiconductor lasers. However, this structure needs an external injection from other laser cavity, resulting in huge cost, and inconvenience.
In spite of it, in this thesis, we demonstrate a novel InAlGaAs-MQW Fabry-Perot laser with the structure of monolithic optical injection. It can enjoy the advantage such as single chip package, needless of optical isolator or circulator, automatic optical alignment, and environmentally robust. The device can achieve high resonance frequency at 41GHz, and comparing with non optical injecting, directly modulation bandwidth has twice improvement to 20GHz.
Abstract I
摘要 II
致謝 III
目錄 V
圖目錄 VII
表目錄 XI
第一章 序論 1
§ 1.1光纖通訊發展及應用 1
§ 1.2 光注入鎖式雷射簡介 4
§ 1.3 論文動機與架構 8
第二章 原理 9
§ 2.1半導體雷射基本原理 9
§ 2.2 半導體雷射頻寬限制之因素 13
§ 2.3光注入式鎖態雷射理論 17
§ 2.4兩段整合光注入式Fabry-Perot半導體雷射設計原理與模擬 18
第三章 元件製作概說與詳細製程步驟 23
§ 3.1流程元件製作概說 23
§ 3.2 晶片研磨與劈裂 25
§ 3.3 詳細製程步驟 26
§ 3.4 兩段整合光注入式Fabry-Perot半導體雷射製作流程 29
§ 3.5 蝕刻剖面圖之結果與討論 37
第四章 量測系統與量測結果分析 49
§ 4.1量測系統 49
§ 4.2量測結果 51
第五章 結論與未來研究方向 65
§ 5.1 總結 65
§ 5.2 未來之研究方向 65
參考資料 67
[1]A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “14-Tb/s (140 x 111-Gb/s PDM/WDM) CSRZ-DQPSK Transmission over 160 km Using 7-THz Bandwidth Extended L-band EDFAs,” European Conference on Optical Communication 2006(ECOC 2006) Post deadline , Th4.1.1.

[2]Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett., vol. 9, pp. 25-27, 1997.
[3]K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo “40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3 μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers” IEEE Photon. Technol. Lett. , vol. 19, no. 19, pp. 1436, Oct. 1, 2007.

[4]C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-21, pp. 1152-6, 1985.

[5]A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection” IEEE J. Quantum Electron., vol. 39, pp. 1196-204, 2003.

[6]T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 709-11, 1995.

[7]K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE Trans. Micro. Theory Tech., vol. 30, pp. 1657-1662, 1982.

[8]X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett., vol. 34, pp. 2040-1, 1998.

[9]L. Chrostowski, C. H. Chang, and C. Chang-Hasnain, “Reduction of relative intensity noise and improvement of spur-free dynamic range of an injection locked VCSEL,” IEEE LEOS. vol.2, pp.706-7, 2003.

[10]N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, pp. 642-50, 1986.

[11]M. C. Espana-Boquera and A. Puerta-Notario, “Noise effects in injection locked laser simulation: phase jumps and associated spectral components,” Electron. Lett., vol. 32, pp. 818-19, 1996.

[12]J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, pp. 1325-7, 1997.

[13]G. Yabre, H. De Waardt, H. P. A. van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron., vol. 36, pp. 385-93, 2000.

[14]H. Toba, Y. Kobayashi, K. Yanagimoto, H. Nagai, and M. Nakahara, “Injection locking technique applied to a 170 km transmission experiment at 445.8 Mbit/s,” Electron. Lett., vol. 20, pp. 370-1, 1984.

[15]N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, and J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightw. Technol., vol. LT-3, pp. 63-7, 1985.

[16]H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, K. Y. Liou, and W. T. Tsang,” Optical Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers with Enhanced RF Performance,” in Proc. Int. Topical Meeting Microwave Photon. (MWP’04), 2004, pp. 225-8.

[17]X. Jin and S. L. Chuang, “Microwave modulation of a quantum-well laser with and without external optical injection” IEEE Photon. Technol. Lett., vol. 13, pp. 648, Jul., 2001.

[18]X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection” Electron. Lett., vol. 34, no.21, pp. 2031-2, Oct. 1998.

[19]E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Optics Express, vol. 16, no. 9, pp 6609, 2008.

[20]H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K.Y. Liou, and W.T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB laser” in Proc. Int. Topical Meeting Microwave Photon. (MWP’03), pp 27, Sep. 10-12, 2003.

[20]L. A. Coldren, S. W. Corzine, ” Diode Lasers and Photonic Integrated Circuits,” Chapter 2, Wiley, New York, 1995.

[21]T. Hiroaki, T. Ken, S. Kenji, Y. Mitsuo, I. Yoshio, S. Akihide, Y. Mikio, O. Taiichi, “NRZ operation at 40 Gb/s of a compact module containing an MQW electroabsorption modulator integrated with a DFB laser,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 572-574, May 1997.

[22]M. N. Sysak, J. W. Raring, G. P. Morrison, D. J. Blumenthal, L. A. Coldren, “Monolithically integrated, sampled grating DBR laser transmitter with an asymmetric quantum well electroabsorption modulator,” IEEE 20th International Semiconductor Laser Conference, ISLC, pp. 29-30, 2006.

[23]E. K. Lau, H.-K. Sung, and M. C. Wu, ”Scaling of resonance frequency for strong injection-locked lasers,” Optics Letters vol. 32, no. 23, pp. 3373-3375, Dec. 1, 2007.

[24]M. Quillec, “Material for future InP Based Optoelectronics: InGaAsP Versus InGaA1As,” SPIE vol. 1361 Physical Concepts of Materials for Novel Optoelectronic Device Applications, pp. 34-46, 1990.

[25]L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55μm VCSELs,” IEEE J. S. Topics In Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.

[26]Harry J. R. Dutton “Understanding Optical Communications” IBM International Technical Support Organization, http://www.redbooks.ibm.com September, 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊