|
[1]A. Sano, H. Masuda, Y. Kisaka, S. Aisawa, E. Yoshida, Y. Miyamoto, M. Koga, K. Hagimoto, T. Yamada, T. Furuta, and H. Fukuyama, “14-Tb/s (140 x 111-Gb/s PDM/WDM) CSRZ-DQPSK Transmission over 160 km Using 7-THz Bandwidth Extended L-band EDFAs,” European Conference on Optical Communication 2006(ECOC 2006) Post deadline , Th4.1.1.
[2]Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photon. Technol. Lett., vol. 9, pp. 25-27, 1997. [3]K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi, T. Kikawa, M. Aoki, and M. Mukaikubo “40-Gb/s Direct Modulation With High Extinction Ratio Operation of 1.3 μm InGaAlAs Multiquantum Well Ridge Waveguide Distributed Feedback Lasers” IEEE Photon. Technol. Lett. , vol. 19, no. 19, pp. 1436, Oct. 1, 2007.
[4]C. H. Henry, N. A. Olsson, and N. K. Dutta, “Locking range and stability of injection locked 1.54 μm InGaAsP semiconductor lasers,” IEEE J. Quantum Electron., vol. QE-21, pp. 1152-6, 1985.
[5]A. Murakami, K. Kawashima, and K. Atsuki, “Cavity resonance shift and bandwidth enhancement in semiconductor lasers with strong light injection” IEEE J. Quantum Electron., vol. 39, pp. 1196-204, 2003.
[6]T. B. Simpson, J. M. Liu, and A. Gavrielides, “Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers,” IEEE Photon. Technol. Lett., vol. 7, pp. 709-11, 1995.
[7]K. Iwashita and K. Nakagawa, “Suppression of mode partition noise by laser diode light injection,” IEEE Trans. Micro. Theory Tech., vol. 30, pp. 1657-1662, 1982.
[8]X. J. Meng, T. Chau, D. T. K. Tong, and M. C. Wu, “Suppression of second harmonic distortion in directly modulated distributed feedback lasers by external light injection,” Electron. Lett., vol. 34, pp. 2040-1, 1998.
[9]L. Chrostowski, C. H. Chang, and C. Chang-Hasnain, “Reduction of relative intensity noise and improvement of spur-free dynamic range of an injection locked VCSEL,” IEEE LEOS. vol.2, pp.706-7, 2003.
[10]N. Schunk and K. Petermann, “Noise analysis of injection-locked semiconductor injection lasers,” IEEE J. Quantum Electron., vol. QE-22, pp. 642-50, 1986.
[11]M. C. Espana-Boquera and A. Puerta-Notario, “Noise effects in injection locked laser simulation: phase jumps and associated spectral components,” Electron. Lett., vol. 32, pp. 818-19, 1996.
[12]J. M. Liu, H. F. Chen, X. J. Meng, and T. B. Simpson, “Modulation bandwidth, noise, and stability of a semiconductor laser subject to strong injection locking,” IEEE Photon. Technol. Lett., vol. 9, pp. 1325-7, 1997.
[13]G. Yabre, H. De Waardt, H. P. A. van den Boom, and G. D. Khoe, “Noise characteristics of single-mode semiconductor lasers under external light injection,” IEEE J. Quantum Electron., vol. 36, pp. 385-93, 2000.
[14]H. Toba, Y. Kobayashi, K. Yanagimoto, H. Nagai, and M. Nakahara, “Injection locking technique applied to a 170 km transmission experiment at 445.8 Mbit/s,” Electron. Lett., vol. 20, pp. 370-1, 1984.
[15]N. A. Olsson, H. Temkin, R. A. Logan, L. F. Johnson, G. J. Dolan, J. P. van der Ziel, and J. C. Campbell, “Chirp-free transmission over 82.5 km of single mode fibers at 2 Gbit/s with injection locked DFB semiconductor lasers,” J. Lightw. Technol., vol. LT-3, pp. 63-7, 1985.
[16]H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, K. Y. Liou, and W. T. Tsang,” Optical Injection-Locked Gain-Lever Distributed Bragg Reflector Lasers with Enhanced RF Performance,” in Proc. Int. Topical Meeting Microwave Photon. (MWP’04), 2004, pp. 225-8.
[17]X. Jin and S. L. Chuang, “Microwave modulation of a quantum-well laser with and without external optical injection” IEEE Photon. Technol. Lett., vol. 13, pp. 648, Jul., 2001.
[18]X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection” Electron. Lett., vol. 34, no.21, pp. 2031-2, Oct. 1998.
[19]E. K. Lau, X. Zhao, H.-K. Sung, D. Parekh, C. Chang-Hasnain, and M. C. Wu, “Strong optical injection-locked semiconductor lasers demonstrating > 100-GHz resonance frequencies and 80-GHz intrinsic bandwidths,” Optics Express, vol. 16, no. 9, pp 6609, 2008.
[20]H.-K. Sung, T. Jung, M. C. Wu, D. Tishinin, T. Tanbun-Ek, K.Y. Liou, and W.T. Tsang, “Modulation bandwidth enhancement and nonlinear distortion suppression in directly modulated monolithic injection-locked DFB laser” in Proc. Int. Topical Meeting Microwave Photon. (MWP’03), pp 27, Sep. 10-12, 2003.
[20]L. A. Coldren, S. W. Corzine, ” Diode Lasers and Photonic Integrated Circuits,” Chapter 2, Wiley, New York, 1995.
[21]T. Hiroaki, T. Ken, S. Kenji, Y. Mitsuo, I. Yoshio, S. Akihide, Y. Mikio, O. Taiichi, “NRZ operation at 40 Gb/s of a compact module containing an MQW electroabsorption modulator integrated with a DFB laser,” IEEE Photon. Technol. Lett., vol. 9, no. 5, pp. 572-574, May 1997.
[22]M. N. Sysak, J. W. Raring, G. P. Morrison, D. J. Blumenthal, L. A. Coldren, “Monolithically integrated, sampled grating DBR laser transmitter with an asymmetric quantum well electroabsorption modulator,” IEEE 20th International Semiconductor Laser Conference, ISLC, pp. 29-30, 2006.
[23]E. K. Lau, H.-K. Sung, and M. C. Wu, ”Scaling of resonance frequency for strong injection-locked lasers,” Optics Letters vol. 32, no. 23, pp. 3373-3375, Dec. 1, 2007.
[24]M. Quillec, “Material for future InP Based Optoelectronics: InGaAsP Versus InGaA1As,” SPIE vol. 1361 Physical Concepts of Materials for Novel Optoelectronic Device Applications, pp. 34-46, 1990.
[25]L. Chrostowski, B. Faraji, W. Hofmann, M.-C. Amann, S. Wieczorek, and W. W. Chow, “40 GHz Bandwidth and 64 GHz Resonance Frequency in Injection-Locked 1.55μm VCSELs,” IEEE J. S. Topics In Quantum Electron., vol. 13, no. 5, Sep./Oct. 2007.
[26]Harry J. R. Dutton “Understanding Optical Communications” IBM International Technical Support Organization, http://www.redbooks.ibm.com September, 1998.
|