(3.229.120.26) 您好!臺灣時間:2021/04/10 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張詔智
研究生(外文):Zhao-Zhi Zhang
論文名稱:三維Flip的存在性之討論
論文名稱(外文):A Discussion of Existence of 3-fold Flips
指導教授:林惠雯林惠雯引用關係
指導教授(外文):Hui-Wen Lin
學位類別:碩士
校院名稱:國立中央大學
系所名稱:數學研究所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:52
中文關鍵詞:存在
外文關鍵詞:Flip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
這一篇文章是關於 Shokurov 所提3維flip 之存在性證明,文章中將呈現一個清楚的證明排序。而這篇文章主要是從 Corti 的論文架構而起,我希望一個剛剛接觸 Minimal Model Program 的初學者,看了這一篇文章可以了解3維flips之存在性證明的關鍵想法,而且對於往後較深入的研究充滿興趣。
In this note, I attempt to offer a good-ordered and detailed explanation of Shokurov’s proof for the existence of 3-fold flips. For the most part, it is based on Corti’s paper. I hope that by reading this note, a beginner will catch the key idea of this proof easily and thus be interested in the latest development of Minimal Model Program.
1 Introduction.......................................................................1
1.1 Motivation......................................................................1
1.2 Outline............................................................................2
1.3 The latest development of MMP.....................................2
2 Preliminaries......................................................................3
2.1 Singularities in MMP......................................................3
2.2 Introduction to MMP......................................................5
2.3 The existence of flips and reduction to pl flips...............8
2.4 Function algebra...........................................................12
2.5 Restricted algebra.........................................................14
2.6 Sketch of the proof.......................................................15
3 Shokurov algebra............................................................17
3.1 b-divisors.....................................................................17
3.2 Saturated b-divisors......................................................19
3.3 Sequence of b-divisors.................................................21
4 How to associate R^0 with a Shokurov algebra?.............23
4.1 Summary......................................................................23
4.2 Mobile b-divisors.........................................................23
4.3 Construction of pbd algebras and Limiting criterion....25
4.4 Boundedness of pbd algebras......................................30
4.5 Mobile restriction.........................................................31
4.6 What is R^S?................................................................32
5 R^S is finitely generated for surface case........................36
5.1 Summary.....................................................................36
5.2 Mobile saturated b-divisers on surfaces.......................38
5.3 Shokurov algebra and D_X.........................................41
5.4 D_X isrational.............................................................43
5.5 Main proof..................................................................44
References.........................................................................45
[CT] Alessio Corti. 3-fold flips after Shokurov, Flips for 3-folds, and 4-folds, Oxford University Press, 2007.
[Sh] V.V. Shokurov. Prelimiting flips, Tr. Mat. Inst. Steklova, 240 (Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry): 82- 219,2003, available at http://www.ma.ic.ac.uk/%7Eacorti/flips.html
[Ta] Hiromichi Takagi. Pl flips after Shokurov, available at http://www.dpmms.cam.ac.uk/~corti/flips/bookflip3.ps
[Fu] Osama Fujino. Special termination and reduction theorem, Flips for 3-folds and 4-folds, Oxford University Press, 2007.
[Ha] Robin Hartshorne. Algebraic Geometry. Springer Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52.
[Ha1] Robin Hartshorne. Stable Reflexive Sheaves. Math. Ann. 254, 121-176(1980)
[KMM] Y. Kawamata, K. Matsuda, K. Matsuki. Introduction to the minimal model problem. In Algebraic geometry, Sendai, 1985, volume 10 of Adv. Stud. Pure Math., pages 283-360. North-Holland, Amsterdam, 1987, available at http://faculty.ms.u-tokyo.ac.jp/~kawamata/index.html
[Ka] Y. Kawamata. Termination of log-flips for algebraic 3-folds. Intl. J. Math. 3(1992),653-659, available at http://faculty.ms.u-tokyo.ac.jp/~kawamata/index.html
[Ka1] Y. Kawamata. Flops connect minimal models, available at http://arXiv.org ”arXiv:0704.1013v1 [math.AG]”
[KM] Kenji Matsuki. Introduction to the Mori Program. Springer-Verlag, New York, 2001.
[KM1] Janos Koll’ar and Shigefumi Mori. Birational Geometry of Algebraic Varieties. Cambridge University Press,1998.
[Ko] Janos Koll’ar. Flips and Abundance for Algebraic Threefolds. Ast’erisque, 211(1992), 1-258.
[BCHM] Caucher Birkar, Paolo Cascini, Christopher D. Hacon, James MCkernan. Existence of minimal models for varieties of log general type, available at http://arXiv.org ”arXiv:0706.1794”
[B] Caucher Birkar. Birational Geometry, available at http://arXiv.org ”arXiv:math/0610203”
[HM] Christopher D. Hacon and James MCkernan. On the existence of flips, available at http://arXiv.org ”arXiv:math/0507597”
[ZS] Zariski, O. and Samuel, P. Commutative Algebra Vol. I. Van Nostrand. [1958-60]
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔