(3.227.208.0) 您好!臺灣時間:2021/04/18 13:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏欽鍾
研究生(外文):Chin-Chung Yen
論文名稱:7XXX系鋁合金添加Sc之顯微組織與機械性質研究
論文名稱(外文):The study on the Microstructure and Mechanical Properties of 7xxx Aluminum Alloys Containing Scandium
指導教授:王建義李雄李雄引用關係
指導教授(外文):Jian-Yih WangShyong Lee
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:75
中文關鍵詞:鋁合金鈧元素
外文關鍵詞:aluminumscandium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以鋁合金7XXX系中AA7039添加0.05 wt.%的Sc;AA7049添加0.106 wt.%的Sc、0.113 wt.%的Zr和2.26 wt.%的Cu,經由不同條件的熱處理程序並進行機械性質測試及顯微組織觀察,以探討7XXX系之鋁合金添加微量Sc、Zr和Cu對其材料性質之影響。並期望此一研究之成果日後能運用於提升7XXX系鋁合金之材料強度並增加其應用的廣泛性。
由實驗結果顯示:AA7039在添加微量Sc後,常溫抗拉強度無論有無經過退火皆有400MPa以上的表現,而AA7049在添加Sc、Zr和Cu後,其抗拉強度為522MPa,且兩者皆在滾軋率R=20%有較強之抗拉強度。而120、150℃溫度下之T6人工時效處理其拉伸試驗結果顯示:AA7049加Sc、Zr和Cu之抗拉強度高達660MPa比AA7039加Sc之抗拉強度466MPa提升許多,主要是其結構上含有散佈強化和析出物較多。
在高溫拉伸部分,AA7039加Sc在溫度400℃以應變率1×10-2S-1下,伸長量124%為最佳效果。AA7049加Sc、Zr和Cu在溫度400℃以應變率5×10-3 S-1,伸長量可達244%,主因在於含有較多晶粒細化劑Sc、Cu和Zr。並且由金相圖中可明顯觀察到AA7049加Sc、Zr和Cu經過500℃、1hr退火,晶粒有明顯的細化現象且有消除擠製流線的作用。
There are two materials in our research. The first one, add 0.05 wt.% Sc into Al-Zn-Mg and name it Al-0.05Sc. Another one, add 0.106 wt.% Sc、0.113 wt.% Zr and 2.26 wt.% Cu and name it Al-0.1ScZr2.2Cu. They were rolling reductions of 20、40% rolling process and artificial aging at temperature 120℃ and 150℃ that in order to discuss precipitation affect in the materials, followed by an extrusion for plates. The superplastic properties were examined in tension at temperature ranging from 300 ~ 500℃ and strain rates ranging from 1×10-2 ~ 1×10-4 S-1.
The microstructure of Al-0.1ScZr2.2Cu alloy by annealing 500℃ for 1hr extruded condition is consisted of equaxied subgrain structure, and grain size is 4μm. The effect of adding Sc and Zr were resisted to recrystalize in Al alloys. After the artificial aging, both of the alloys increase to HRB17 respectively. Using artificial aging to find peak-aging and use this parameter to test tensile experience. After past peak-aging, the UTS of Al-0.1ScZr2.2Cu is 660MPa. And the result of 20% rolling reduction exhibit that both of the alloys is the better UTS, 455MPa and 510MPa. During high temperature superplasticity, the second phase particles consist of Sc, Zr and Cu elements, which play an important part for tensile testing. The best situation of elongation is 244% at temperature 400℃ and strain rate 5×10-3 S-1.
總目錄........................................................ I
表目錄....................................................... IV
圖目錄....................................................... VI
二、文獻回顧.................................................. 3
2-1 7XXX 系鋁合金簡介...................................... 3
2-2 Sc 對鋁合金影響........................................ 3
2-3 時效硬化............................................... 6
2-3-1 時效硬化流程...................................... 6
2-3-2 析出硬化機構...................................... 9
2-4 鋁合金之晶粒細化...................................... 11
2-5 金屬材料再結晶理論.................................... 12
2-5-1 冷作加工儲存能................................... 12
2-5-2 儲存能的釋出及再結晶驅動力....................... 13
2-5-3 再結晶晶粒尺寸................................... 13
2-6 超塑性介紹............................................ 14
2-6-1 超塑性的分類..................................... 15
2-6-2 超塑性成形理論基礎............................... 17
三、實驗方法與步驟........................................... 24
3-1 實驗材料.............................................. 24
3-2 實驗設備.............................................. 25
3-3 實驗步驟.............................................. 26
3-3-1 鑄錠材擠製....................................... 26
3-3-2 冷輥軋實驗....................................... 26
3-3-3 退火參數設定..................................... 27
3-3-4 人工時效......................................... 27
3-3-5 拉伸試驗......................................... 28
3-3-6 顯微組織觀察..................................... 29
3-3-7 洛式硬度......................................... 29
四、結果與討論............................................... 37
4-1 擠製材與滾軋材之顯微結構與機械性質.................... 37
4-1-1 顯微結構......................................... 37
4-1-2 硬度試驗......................................... 40
4-1-3 常溫拉伸試驗..................................... 40
4-2 擠製材經人工時效之機械性質............................ 41
4-2-1 硬度測試......................................... 41
4-2-2 常溫拉伸試驗..................................... 42
4-3 擠製材與滾軋材之拉伸測試.............................. 42
4-3-1 高溫拉伸試驗..................................... 42
4-3-2 顯微結構......................................... 44
五、結論..................................................... 71
六、參考文獻: ............................................... 72
[1]Yu. A. Filatov, V.I. Yelagin, V.V. Zakharov, “New Al-Mg-Sc alloys” Materials Science and Engineering, A280 (2000) 97-101.
[2]Zhimin Yin, Qinglin Pan, Yonghong Zhang, FengJiang, “Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys”, Materials Science and Engineering, A280 (2000) 151–155.
[3]Vladivoj Ocenasek, Margarita Slamova “Resistance to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, 47 (2001) 157-162.
[4]Lawrence S. Kramer, William T. Tack, “Scandium in Aluminum Alloys”, Advanced Materials & Processes, 10 (1997) 23-24.
[5]Hatch, J. E., Ed., “Aluminum properties and physical metallurgy”, American Society for Materials, Materials Park, Ohio, 1984.
[6]L. K. Lamikov and G. V. Samsonov, “Soviet non-ferrous metals res.”, USSR, 1964, pp.9-79.
[7]E. A. Marquis and D. N. Seidman, “Nanoscale structure evolution of Al3Sc precipitation in Al(Sc) alloys”, Acta Mater., vol.49, 2001, pp.1909-1919.
[8]A. F. Noraman, P. B. Prangnell and R. S. McEwen, “The solidification behavior of dilute aluminum-scandium alloys.”, Acta mater., vol.46, 1998, p.5715-5732.
[9]D. N. Seilman, E. A. Marquis, and D. C. Dunand, “Precipitation strengthening at ambient and elevated temperature of heat-treatable Al(Sc) alloys”, Acta Materialia, vol.50, 2002, pp.4021-4035.
[10]J. H. Kim, J. T. Yeom, and D. G. Lee, “Effect of scandium content on the hot extrusion of Al-Zn-Mg-(Sc) alloy”, Journal of Materials Processing Technology, 2007, pp.635-639
[11]T. G. Nieh, R. Kaibyshev, L. M. Hsiung, N. Nguyen, and J. Wadsworth, “Subgrain formation and evolution during the deformation of an Al-Mg-Sc alloy at elevated temperatures”, Acta Metallurgica, vol.36, 1996, pp.1011-1016.
[12]F. Musin, R. Kaibyshev, Y. Motohashi, and G. Itoh, “High strain rate superplasticity in a commercial Al-Mg-Sc alloy”, Scripta Materialia, vol.50, 2004, pp.511-516.
[13]S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita and T. G. Langdon, “Influence of scandium and zirconium on grain stability and superplastic ductilities in ultrafine-grained Al-Mg alloys”, Acta Materialia, vol.50, 2002, pp.553-564.
[14]Zhimin Yin, Qinglin Pan, Yonghong Zhang, and Feng Jiang, “Effect of minor Sc and Zr on microstructure and mechanical properties of Al-Mg based alloys”, Material Science & Engineering, A280, 2000, pp.151-155.
[15]M. A. Munoz-Morris, C. Garcia Oca, G. Gonzalez-Doncel, and D. G. Morris, “Mircostructural evolution of dilute Al-Mg alloys during processing by equal channel angular pressing and during subsequent annealing”, Material Science & Engineering, vol.375-377, 2004, pp.853-856.
[16]V. Ocenasek, and M. Slamova, “Resistence to recrystallization due to Sc and Zr addition to Al-Mg alloys”, Materials Characterization, vol.47, 2001,pp.157-162.
[17]Emmanuelle. A. Marquis, and David. N. Seidman, “Microstructure evolution of Al3Sc precipitates by three-dimensional atom-probe microscopy”, Materials science and engineering department, Northwestern University, Evanston, IL, pp.60208-3108.
[18]I. J. Polmear, “Light Alloys-Metallurgy of the Light Metals 2nd ed.”,Edward Arnold, London, England, 1989, pp.18-62.
[19]“Aluminum metals handbook”, Ninth Edition, American Society for Metals, vol.2, 1980, pp.28-43.
[20]G. W. Lorimer and R. B. Nicholson, “Further Results on the Nucleation of Precipitates in the Al-Zn-Mg system”, Acta Metallurgica, vol.14, 1966, pp.1009-1013.
[21]P. N. T. Unwin, and R. B. Nicholson, “The Nucleation and Initial Stages of Growth of Grain Boundary Precipitates in Al-Zn-Mg and Al-Mg Alloys”, Acta Metallurgica, vol.17, 1969, pp.1379-1393.
[22]C. J. Peel, B. Evans, C. A. Baker, D. A. Bennett, and P. J. Gregson, “The development and application of improved aluminum-lithium alloys”, Proceeding of the second International Aluminum-Lithium Conference, The Metallurgy Society of AIME, California USA, April, 1983, pp.363-392.
[23]劉國雄, 林樹均, 李勝隆, 鄭晃忠, 葉均蔚,“工程材料科學”,全華科技圖書出版, 1999, pp.339-342。
[24]C. E. Deiter, “Mechanical metallurgy”, 3rd ed., McGraw-Hill, 1986, pp.221-227.
[25]Thomas H. Courtney, “Mechanical Behavior of Materials”, Second Edition, McGraw-Hill Higher Education, 2000, pp.196-210.
[26]李正國, 李志偉, 林本源,“熱處理”, 高立圖書有限公司,1996.pp.440
[27]M.M. Sharma and M.F. Amateaub, “Aging response of Al–Zn–Mg–Cu spray formed alloys and their metal matrix composites”, Materials Science and Engineering A, 2006. pp.87-96
[28]葉均蔚, “鎂及鋁合金之超塑性成形”,工業材料雜誌, 174 期, 90 年6 月, pp.102-112.
[29]R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Km, “Characterization of superplastic deformation behavior of a fine grain 5083 Al alloy sheet”, Metallurgical and Materials Transactions, 1996, pp.1889.
[30]R. Verma, P. A. Friedman, A. K. Ghosh, C. Kim, and S. Kim, “Superplastic forming characteristics of fine-grained aluminum”, J. Mater. Sci. Eng, 1995, pp.543.
[31]H.Mindivan, M.Baydogan, and E. S. Kayali, “Wear behaviour of 7039 aluminum alloy”. Materials Characterization, 2005,pp.263-269
[32]M. da Fonte, F. Romeiro, M. de Freitas, “The effect of microstructure and environment on fatigue crack growth in 7049 aluminium alloy at negative stress ratios”, International Journal Of Fatigue, 2003,1209-1216
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔