(100.26.179.251) 您好!臺灣時間:2021/04/12 20:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李政勳
研究生(外文):Jheng-Syun Li
論文名稱:剪力流內重力對傳輸性質的影響
論文名稱(外文):The influence of gravity force on transport properties in Sheared Granular Flows
指導教授:蕭述三蕭述三引用關係
指導教授(外文):Shu-San Hsiau
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:121
中文關鍵詞:剪力槽重力效應顆粒流
外文關鍵詞:gravitygranular flowshear cell
相關次數:
  • 被引用被引用:1
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
本論文以操作實驗方法,使用二維直立式與水平式剪力槽裝置來研究重力對顆粒流動以及傳輸現象的影響。藉由使用粒子追蹤技術與影像處理方法來測量粒子水平方向與垂直方向的平均速度、擾動速度、粒子溫度、擴散係數等物理量。實驗設定為固定粒子佔有體積,改變四組轉盤速度,以及不同方位來拍攝顆粒流場:直立式的View 1、View 2、View 3,與水平式的horizontal來進行實驗。
本文中,重力對於顆粒流場十分重要。藉由使用直立式剪力槽,在固定整體粒子佔有體積的情況下,重力與粒子流動方向還是會導致三個觀測面的粒子堆積緊密度有些許不同:粒子由下往上流動的觀測面(View 1)的粒子堆積最緊密;粒子由上往下流動的觀測面(View 3)的粒子堆積最鬆散,粒子由右往左流動的觀測面(View 2)堆積程度則位於兩者之間。因此三個拍攝面的粒子會因為堆積緊密度的差異而導致相關物理量有差別,亦即View 3的平均速度、擴散係數會是最大,而擾動速度與粒子溫度最小,View 1則是和View 3相反,View 2介於兩者之間。
而在直立式與水平式剪力槽的研究中顯示,重力效應會影響顆粒運動與傳輸現象的強弱。直立式中,重力與傳輸方向垂直;水平式中,重力與傳輸方向平行且反向,導致水平式的運動與傳輸性質,如速度、粒子溫度、擴散係數等,皆小於直立式。由以上結果我們可得知,重力效應在粒子流的流變行為上,十分重要。
Experiments were performed both in vertical and horizontal shear cell devices to investigate the influences of gravity force on the flow behavior and transport properties. The motions of the granular materials were recorded by a high-speed camera. By using image processing technology and particle tracking method, the average velocity and fluctuation velocity in the streamwise and the transverse directions could be measured and analyzed. We performed the experiments at four different wall velocities from four observational views (vertical : View 1、View 2、View 3 and horizontal : horizontal).
Even the bulk solid fraction is constant in the vertical shear cell, the local solid fraction is not homogenous due to the gravity force and flow direction. Therefore the velocity gradient and transport properties in the three observational views were different. Solid fraction in the View 1 is the highest where particles move upwards. Oppositely, View 3 has the smallest solid fraction and particles move downwards. In View 3, the average velocity and diffusion coefficient of particles are the greatest comparing with the other views. However the fluctuation velocity and granular temperature are the smallest in View 3.
Gravity force has a significant influence on transport properties. In the horizontal shear cell, the gravity force acts downward, opposite to the direction of transport properties, resulting in the reducing of the transport properties in the granular flows. However in the vertical shear the direction of gravity force action is perpendicular to the direction of the transport property, the velocity gradient and transport properties are smaller than those in the vertical shear cell.
誌謝…………………...…………………….………………i
摘要…………………...…………………….……...………ii
Abstract…………………………………….…………......iii
附表目錄……………...…………………………………..vii
附圖目錄…………………….......…...………….…..…...viii
符號說明…………….…………………...……….…..….xiv
第一章 簡介………………………………….……………1
1.1 粒子流簡介………………………….……………1
1.2 粒子流與一般流體之異同………….……………4
1.3 粒子流研究回顧…………………….……………5
1.3.1 粒子流的發展…………………………….……….……5
1.3.2 剪力槽的探討…………………………….……….……8
1.4 研究方向與架構…………………….…………..13
1.4.1 研究動機……………………………..…………..……13
1.4.2 研究目的…………………………………………..…..13
第二章 實驗方法與原理………………….…………..…15
2.1 實驗設備…………………………….……..……15
2.1.1 剪力槽裝置………………………….………….….…15
2.1.2 待測顆粒體…………………………….……..………16
2.1.3 量測與觀測儀器…………………….…………..……17
2.2 實驗設定…………..……………….……………18
2.2.1 直立式剪力槽……………….……....…………..……18
2.2.1 水平式剪力槽……………….…........…………..……19
2.3 實驗步驟………………….………………..……20
2.3.1 儀器操作……………….…….………..……….……..20
2.3.2 影像處理與分析…………….……..……….…..…….22
2.3.3 注意須知…………………….………...………….…..22
2.4 Correlation原理…………...…...……….…..….23
2.5 粒子溫度的概念……………...…..……....…..…25
2.6 自我擴散理論……………………...……..……..27
2.7 誤差處理……………………….…..……..…..…29
2.7.1 誤差來源……………………….……….………..…...29
2.7.2 誤差校正……………….……….……..……….….….30
第三章 結果與討論………………………….…………..32
3.1 單方位粒子流動………...….………….……..…32
3.1.1 速度分佈圖與粒子溫度分佈圖…………...……...….32
3.1.2 擴散位移與擴散係數……………….......………...….34
3.2 三方位粒子流動………...….……………...……36
3.2.1 速度與粒子溫度的比較…………………….…...…...36
3.2.2 擴散位移與擴散係數的比較………….……….…….39
3.3 水平方位與垂直方位比較...….………….……..41
第四章 結論…………..………………………….………43
參考文獻……………..………………………….…..……46
Ahn H., Brcnnen C. E., and Sabersky R. H., 1991, Measurements of velocity, velocity fluctuation, density, and stresses in chute flows of granular materials, Journal Applied Mechanics, vol. 58, pp. 792-803
Aidanpää J. O., Shen H. H. and Gupta R. B., 1996, Experimental and numerical studies of shear layers in granular shear cell, Journal Engineering Mechanics, March, pp. 187-196
Barker G. C. and Mehta A., 1993, Transient phenomena, self-diffusion and orientational effects in vibrated powders, Physical Review, E 47, pp. 184-188
Brucks A., Ardnt T., Ottino J. M. and Lueptow R. M., 2007, Behavior of flowing granular materials undervariable g, Physical Review, E 75, 032301
Campbell C. S., 2006, Granular material flows - an overview, Powder Technology, vol. 162, pp. 208-229
Campbell C. S., 1997, Self-diffusion in granular shear flows, Journal of Fluid Mechanics, vol. 348, pp. 85-101
Campbell C. S. and Gong A., 1987, Boundary conditions for two dimensional granular flows, Zhejiang University Press, pp. 278-283
Campbell C. S. and Brennen C. E., 1985, Chute flows of granular material: some computer simulations, Transactions of the ASME, vol. 52, pp. 172-178
Campbell C. S. and Brennen C. E., 1985, Computer simulation of granular shear flows, Journal of Fluid Mechanics, vol. 151, pp. 167-188
Campbell C. S., 1989, The stress tensor for simple shear flows of a granular material, Journal of Fluid Mechanics, vol. 203, pp. 449-473

Campbell C. S., 1990, Rapid granular flows, Annu. Rev. Fluid Mech., vol. 22, pp. 57-92
Campbell C. S. and Wang D. G., 1992, Reynolds analogy for a shearing granular material, Journal of Fluid Mechanics, vol. 244, pp. 527-546
Campbell C. S. and Zhang Yi, 1992, The interface between fluid-like and solid-like behaviour in two-dimensional granular flows, Journal of Fluid Mechanics, vol. 237, pp. 541-568
Chou C. S., 1999, Interface between fluid-and solid-like behaviour in rapid granular flows down bumpy inclines, Intnational Journal for Numberical and Analytical Methods in Geomechanics, vol. 23, pp. 1175-1194
Choi J., Kudrolli A., Rosales R. R. and Bazant M. Z., 2006, Diffusion and mixing in gravity driven dense granular flows, Mathematics, Massachusetts Institute of Technology, Cambridge, MA. 01239
Cleary P. W., 2008, The effect of particle shape on simple shear flows, Powder Technolog, vol. 179, pp. 144-163
Craig K. C., Buckholz R. H. and Domoto G., 1987, The effects of shear surface boundaries on normal and shear stresses for rapid shearing flow of dry cohesionless metal powder-an experimental study, J. Tribol., vol. 109, pp. 232-256
Drake T. G., 1991, Granular flow :physical experiment and their implications for microstructural theories, Journal of Fluid Mechanics, vol. 225, pp. 121-152
Elliott K. E., Ahmadi G. and Kvasnak W., 1997, Couette flows of a granular monolayer - an experimental study, J. Ncn-Newtonian Fluid Mech., vol. 74 pp. 89-111
Forterre Y. and Pouliquen O., 2008, Flows of dense granular media, Annual Review of Fluid Mechanics, vol. 40, pp. 1-24
Gioia G. and Ott-Monsivais S. E., 2006, Fluctuating velocity and momentum transfer in dense granular flows, Physical ReviewLetters, prl. 96
Goldhirsch I., 2003, Rapid granular flows, Annu. Rev. Fluid Mech., vol. 35, pp. 267-293
Hanes D. M. and Inman D. L., 1985, Observations of rapidly flowing granular fluid materials, Journal of Fluid Mechanics, vol. 150, pp. 357-380
Hsiau S. S. and Hunt M. L., 1993a, Shear-induced particle diffusion and longitudinal velocity fluctuations in a granular-flow mixing layer, Journal of Fluid Mechanics, vol. 251, pp. 299-313
Hsiau S. S. and Jang H. W., 1998, Measurements of velocity fluctuations of granular materials in a shear cell, Experimental Thermal and Fluid Science, vol. 17, pp. 202-209
Hsiau S. S. and Shieh Y. M., 2000, Effect of solid fraction on fluctuations and self-diffusion of sheared granular flows, Chemical Engineering Science, vol. 55, pp. 1969-1979
Hsiau S. S. and Yang W. L., 2005, Transport property measurements in sheared granular flows, Chemical Engineering Science, vol. 60, pp. 187-199
Hvorslev M. J., 1936, A ring shearing apparatus for the determination of the shearing resistance and plastic flow of soil, In Proc. Intl Conf. Soil Mech. Found. Engng, Cambridge, Mass., vol. 2, pp. 125-129
Isaac G., 2003, Rapid granular flows, Annual Review of Fluid Mechanics, Vol. 35, pp. 267-293
Jaeger H. M., Nagel S. R. and Behringer R. P., 1996, Granular solids, liquids, gases, Rev. Mod Phys., vol. 68, pp. 1259-1273
Jalali P., Ritvanen J. and Sarkomaa P., 2005, Transient and steady state behaviors of rapid granular shear flows, Experiments in Fluids, vol. 39, pp. 552-561
Jenike A. W., 1961, Gravity flow of bulk solids, Utah Engineering Experiment Station, Salt Lake City, Bulletin No. 108
Jenkins J. T. and Richman M. W., 1986, Boundary conditions for plane flows of smooth, nearly elastic, circular disks, Journal of Fluid Mechanics, vol. 171, pp. 53-69
Johnson P. C. and Jackson R., 1987, Frictional-collisional constitutive relations for granular materials, with application to plane shearing, Journal of Fluid Mechanics, vol. 176, pp. 67-93
Kenneth E. E., Goodarz A. and William K., 1998, Couette flows of a granular monolayer-an experimental study, Journal of Ncn-Newtonian Fluid Mechanics, vol. 74, pp. 89-111
Klein S. P. and White B. R., 1988, Dynamic shear of granular material under variable gravity conditions, AIAA J., vol. 28, pp. 1701
Kim H. and Rosato A. D., 1992, Particle simulations of the flow of smooth spheres between bumpy boundaries, Advances in Micromechanics of Granular Materials, pp. 91-100
Louge M. Y., 1994, Computer simulations of rapid granular flows of spheres interacting with a flat, frictional boundary, Phys. Fluids, vol. 6, pp. 2253-2269
Louge M. Y., Jenkins J. T. and Hopkins M. A., 1990, Computer simulations of rapid granular shear flows between parallel bumpy boundaries, Phys. Fluids, A 2, pp. 1042
Luding S., Latzel M., Volk W., Diebels S. and Herrmann H. J., 2001, From discrete element simulations to a continuum model, Comput. Methods Appl. Engrg. , vol. 191, pp. 21-28
Lun C. K., Savage S. B., Jeffery D. J. and Chequrniy N., 1983, Kinetic theories for granular flow: inelastic particles in couette flow and slightly inelastic particles in a general flowfield, Journal of Fluid Mechanics, vol. 140, pp. 223-256
Natarajan V. V. R., Hunt M. L. and Taylor E. D., 1995, Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow, Journal of Fluid Mechanics, vol. 304, pp. 1-25
Ning Z. and Ghadiri M., 2006, Distinct element analysis of attrition of granular solids under shear deformation, Chemical Engineering Science, vol. 61, pp. 5991- 6001
Novosad J., 1964, Apparatus for Measuring the dynamic angles of internal friction and external friction of a granular material, Collection Czech. Chem. Commum., vol. 29, pp. 2697-2701
Pandey P., Song Y. X., Kayihan F. and Turton R., 2006, Simulation of particle movement in a pan coating device using discrete element modeling and its comparison with video-imaging experiments, Powder Technology, vol. 161, pp. 79-88
Pouliquen O. and Chevoir F., 2002, Dense flows of dry granular material, C. R. Phys., vol. 3, pp. 163-175
Potapov A. V. and Campbell C. S., 1997, Computer simulation of shear-induced particle attrition, Powder Technology, vol. 94, pp. 109-122
Reynolds O., 1885, On the dilatancy of media composed of rigid particles in contact, Phil. Mag., vol. 20, pp. 469-481
Richman M. W., 1988, Boundary conditions based upon a modified Maxwell-ian velocity distribution function for flows of identical, smooth, nearly elastic spreres, Acta Mech, vol. 75, pp. 227
Roscoe K. H., 1953, An apparatus for the application of simple shear to samples, Proc. 3rd Int. Conf. Soil Mechanics and Foundation Engineering, Zurich vol. 1, pp. 186-91
Roux J. N. and Combes G., 2002, Quasistatic rheology and the origin of strain, C. R. Phys., vol. 3, pp. 131-140
Savage S. B. and Dai R., 1993, Studies of granular shear flows:wall slip velocities, ‘layering’ and self diffusion, Mechanics of Materials, vol. 16, pp. 225-238
Savage S. B. and Mckeown S., 1983, Shear stress developed during rapid shear of dense concentrations of large spherical particles between concentric cylinders, Journal of Fluid Mechanics, vol. 127, pp. 453-472
Savage S. B. and Sayed M., 1984, Stresses developed by dry cohesionless granular materials sheared in an annular shear cell, Journal of Fluid Mechanics, vol. 142, pp. 391-430
Scarlett B. and Todd A. C., 1968, A split ring annular shear cell for the determination of the shear strength of a powder, Journal of Scientific Instruments, vol. 1, pp. 655-656
Walton O. R. and Braun R. L., 1986a, Viscosity and temperature calculations for shearing assemblies of inelastic, frictional disks, Journal of Rheology, vol. 30, pp. 949-980
Walton O. R. and Braun R. L., 1986b, Stresses calculations for assemblies of inelastic spheres in uniform shear, Acts Mechanica, vol. 63, pp. 73-86
Wang W. J., Kong X. Z. and Zhu Z. G., 2007, Friction and relative energy dissipation in sheared granular materials, Physical review, E. 75
Warr S., Jacques G. T. H. and Huntley J. M., 1994, Tracking the translational and rotational motion motion of granular particles : use of high-speed for photography and image processing, Powder Technology, vol. 81, pp. 41-56
Zeilstra C., van der Hoef M. A., and Kuipers J. A. M., 2006, Simulation study of air-induced segregation of equal-sized bronze and glass particles, Physical Review, E. 74
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔