跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 19:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛力楓
研究生(外文):Li-Feng-Hsueh
論文名稱:含η1-和η3-吡咯配位基及雙芽基酮胺配位基鎂金屬錯化合物之合成及對環己內酯的開環聚合反應
論文名稱(外文):Magnesium Complexes containing η1- and η3- Pyrrolyl Ligands or Ketiminate Ligands. Synthesis and ε-Caprolactone Ring Opening Polymerization.
指導教授:黃瑞賢黃瑞賢引用關係
指導教授(外文):Jui-Hsien Huang
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:103
中文關鍵詞:吡咯酮胺鎂金屬
相關次數:
  • 被引用被引用:0
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
含一倍量吡咯及酮胺配位基鎂金屬錯化合物系統
一系列含一倍量配位基鎂金屬錯化合物已經被合成與鑑定。取{Mg[N(SiMe3)2]2}2 (1) 與一當量的DMAMPH於甲苯下反應一個小時,合成{Mg(DMAMP)[N(SiMe3)2]}2 (2)。取1與一當量的DEAMPH於甲苯下反應一個小時,合成{Mg(DEAMP)[N(SiMe3)2]}2 (3)。取1與一當量的TBAMPH於甲苯下反應一個小時,合成{Mg(TBAMP)[N(SiMe3)2]}2 (4)。取1與一當量的OCMeCHCMeNHAr (Ar=2,6-iPr2C6H3)於甲苯下反應一個小時,合成{Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5)。取MeMgCl與一當量的Lithium Ketiminate 於四氫呋喃下反應五個小時,可經由脫去LiCl後合成Mg(OCMeCHCMeNAr)(CH3) (6)。取1與一當量的OCMeCHCMeNHAr´(Ar´=2-OMeC6H4)於甲苯下反應一個小時,合成{Mg(OCMeCHCMeNAr´) [N(SiMe3)2]}2 (7)。所有新合成的金屬錯化合物均有利用1H及13C NMR進行光譜的鑑定,而2、3、4、5及7則可獲得適合的晶體並以X-Ray單晶繞射定其結構。所有的錯化合物均有加入環己內酯(ε-caprolactone)進行開環聚合催化反應,以探討其催化活性及反應性。
含兩倍量吡咯及酮胺配位基鎂金屬錯化合物系統
一系列含兩倍量配位基鎂金屬錯化合物已經被合成與鑑定。取1與兩當量的DMAMPH於四氫呋喃下反應兩個小時,合成Mg(DMAMP)2(THF) (8)。若增加反應時間至24小時則可獲得Mg(DMAMP)2(THF)2 (9)。以四氫呋喃再結晶後仍然獲得9。取1與兩當量的TBAMPH於四氫呋喃下反應兩個小時,合成Mg(TBMAMP)2(THF)2 (10)。取1與兩當量的TBAMPH於甲苯下反應兩個小時,合成Mg(TBMAMP)2 (11)。取1與兩當量的OCMeCHCMeNHAr (Ar=2,6-iPr2C6H3) 於四氫呋喃下反應三個小時,合成Mg(OCMeCHCMeNAr)2(THF) (12)。若以MgBu2與兩當量的OCMeCHCMeNHAr於四氫呋喃下反應一個小時,可經由脫去兩當量的丁烷獲得相同產物。取1與兩當量的OCMeCHCMeNHAr於乙醚下反應三個小時,合成Mg(OCMeCHCMeNAr)2(Et2O) (13)。若以MgBu2與兩當量的OCMeCHCMeNHAr於四氫呋喃下反應三個小時,可經由脫去兩當量的丁烷獲得相同產物。錯化合物8-13均有利用1H及13C NMR進行光譜的鑑定,其中9、11、12及13則可獲得適合的晶體並以X-Ray單晶繞射定其結構。
Magnesium complexes containing one equivalent pyrrolyl ligands and keteminate lignads
A series of the magnesium complexes containing one equivalent ligands have been synthesized and characterized. Reaction of 1 equiv. of DMAMPH with the {Mg[N(SiMe3)2]2}2 (1) in toluene affords {Mg(DMAMP)[N(SiMe3)2]}2 (2). A reaction of 1 equiv. of DEAMPH with the {Mg[N(SiMe3)2]2}2 (1) in toluene afford {Mg(DEAMP)[N(SiMe3)2]}2 (3). Also the reaction of 1 equiv. of TBAMPH with the 1 in toluene afford {Mg(TBAMP)[N(SiMe3)2]}2 (4). Reaction of 1 equiv. of OCMeCHCMeNHAr (Ar=2,6-iPr2C6H3) with the 1 in toluene afford {Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5). The reaction of 1 equiv. of Lithium keteminate with MeMgCl in tetrahydrofuran result in the elimination of lithium chloride along with the formation of Mg(OCMeCHCMeNAr)(CH3) (6). Reaction of 1 equiv. of OCMeCHCMeNHAr´ (Ar´=2-OMeC6H4) with 1 in toluene afford {Mg(OCMeCHCMeNAr´) [N(SiMe3)2]}2 (7). All the new compounds were characterized by 1H and 13C NMR spectroscopy and the structure of 2.3.4.6 and 7 have also been determined by X-ray crystallographic studies. All the magnesium complexes have been studied as catalysts for the ring-opening polymerization(ROP) of ε-caprolactone.

Magnesium complexes containing two equivalent pyrrolyl ligands and keteminate lignads
A series of the magnesium complexes containing two equivalent ligands have been synthesized and characterized. Reaction of 2 equiv. of DMAMPH with the {Mg[N(SiMe3)2]2}2 (1) in tetrahydrofuran in two hours afford Mg(DMAMP)2(THF) (8). If the reaction time up to 24 hours , we can afford Mg(DMAMP)2(THF)2 (9). After recrystallized by tetrahydrofuran, we still get 9. Reaction of 2 equiv. of TBAMPH with 1 in tetrahydrofuran afford Mg(TBMAMP)2(THF)2 (10). We can afford Mg(TBMAMP)2 (11) in toluene under the same condition. Reaction of 2 equiv. of OCMeCHCMeNHAr with MgBu2 in tetrahydrofuran in one hour afford Mg(OCMeCHCMeNAr)2(THF) (12). 12 also can be prepare by 2 equiv. of OCMeCHCMeNHAr with 1 in tetrahydrofuran. Similarly, reaction of 2 equiv. of OCMeCHCMeNHAr with MgBu2 in diethylether in 3 hours afford Mg(OCMeCHCMeNAr)2(Et2O) (13). 13 also can be prepare by 2 equiv. of OCMeCHCMeNHAr with 1 in diethylether. All the new compounds were characterized by 1H and 13C NMR spectroscopy and the structure of 9.11.12 and 13 have also been determined by X-ray crystallographic studies.
本文目錄
謝誌 I
中文摘要 II
本文目錄 VI
圖目錄 VIII
圖解目錄 XI
表目錄 XIII
第一章 序論 1
第二章 含一倍量吡咯及酮胺配位基鎂金屬錯化合物系統 10
2-1 含一倍量雙芽吡咯配位基鎂金屬錯化合物之合成與鑑定 10
2-2 含一倍量雙芽基酮胺配位基鎂金屬錯化合物之合成與鑑定 37
第三章 含兩倍量吡咯及酮胺配位基鎂金屬錯化合物系統 49
3–1 含兩倍量雙芽吡咯配位基鎂金屬錯化合物之合成與鑑定 49
第四章 含一倍量吡咯及酮胺配位基鎂金屬錯化合物之開環聚合反應 63
4-1 含一倍量吡咯配位基鎂金屬錯化合物之開環聚合反應 63
4-2 含一倍量酮胺配位基鎂金屬錯化合物之開環聚合反應 64
第五章 實驗部份 65
5–1 一般實驗 65
5–2 物理性質的測量 65
5–3 配位基與金屬起始物合成 66
5-3-1 合成{Mg(DMAMP)[N(SiMe3)2]}2 (2) 66
5-3-2 合成 {Mg(DEAMP)[N(SiMe3)2]}2 (3) 67
5-3-3 合成 {Mg(TBAMP)[N(SiMe3)2]}2 (4) 68
5-3-4 合成{Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5) 68
5-3-5 合成Mg(OCMeCHCMeNAr)Me (6) 69
5-3-6 合成{Mg(OCMeCHCMeNAr´)[N(SiMe3)2]}2 (7) 70
5-3-7 合成Mg(DMAMP)2(THF) (8) 70
5-3-8 合成Mg(DMAMP)2(THF)2 (9) 71
5-3-9 合成Mg(TBMAMP)2(THF)2 (10) 72
5-3-10 合成Mg(TBMAMP)2 (11) 72
5-3-11 合成Mg(OCMeCHCMeNAr)2(THF) (12) 73
5-3-12 合成Mg(OCMeCHCMeNAr)2(Et2O) (13) 74
第六章 參考文獻 77
附錄1 X-ray Data 81
附錄2 NMR Data 87

圖目錄
Figure 2-1-1. {Mg(DMAMP)[N(SiMe3)2]}2 (2)的VT 1H NMR光譜(*d8-toluene, 300 Hz NMR) 13
Figure 2-1-2. 一級反應的線性關係圖 15
Figure 2-1-3. {Mg(DEAMP)[N(SiMe3)2]}2 (3)的VT 1H NMR光譜(*d8-toluene, 300 Hz NMR) 19
Figure 2-1-4. 1H -13C HSQC 2D NMR spectra of {Mg(DEAMP)[N(SiMe3)2]}2 (3) 20
Figure 2-1-5. 1H -13C HSQC 2D NMR spectra of {Mg(DEAMP)[N(SiMe3)2]}2 (3) 21
Figure 2-1-6. ORTEP drawing of {Mg(DMAMP)[N(SiMe3)2]}2 (2) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 24
Figure 2-1-7. ORTEP drawing of {Mg(DMAMP)[N(SiMe3)2]}2 (2) with thermal ellipsoids drawn at the 30% probability level. Hydrogen、carbon and silicon atoms are omitted for clarity. 25
Figure 2-1-8. ORTEP drawing of {Mg(DEAMP)[N(SiMe3)2]}2 (3) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 27
Figure 2-1-9. ORTEP drawing of {Mg(DEAMP)[N(SiMe3)2]}2 (3) with thermal ellipsoids drawn at the 30% probability level. Hydrogen、carbon and silicon atoms are omitted for clarity. 28
Figure 2-1-10. {Mg(TBAMP)[N(SiMe3)2]}2 (4)的VT 1H NMR光譜(*d8-toluene,300 Hz NMR) 31
Figure 2-1-11. ORTEP drawing of {Mg(TBAMP)[N(SiMe3)2]}2 (4)with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 34
Figure 2-1-12. ORTEP drawing of {Mg(TBAMP)[N(SiMe3)2]}2 (4)with thermal ellipsoids drawn at the 30% probability level. Hydrogen、carbon and silicon atoms are omitted for clarity. 35
Figure 2-2-1. {Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5)的VT 1H NMR光譜(*d8-toluene,300 Hz NMR) 39
Figure 2-2-2. ORTEP drawing of {Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5)with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 41
Figure 2-2-3. ORTEP drawing of {Mg(OCMeCHCMeNAr´)[N(SiMe3)2]}2 (7) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 46
Figure 2-2-4. 錯化合物7晶體結構簡化示意圖 47
Figure 3-1-1. ORTEP drawing of Mg(DMAMP)2(THF)2 (9) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 52
Figure 3-1-2. ORTEP drawing of Mg(TBMAMP)2 (11)with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 56
Figure 3-1-3. ORTEP drawing of Mg(OCMeCHCMeNAr)2(THF) (12) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 58
Figure 3-1-4. ORTEP drawing of Mg(OCMeCHCMeNAr)2(Et2O) (13) with thermal ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. 60

圖解目錄
Scheme 1-1 第四族metallocenes 與MAO的活化途徑 1
Scheme 1-2 β-二酮胺、酮胺及和希夫鹼等系統配位基 2
Scheme 1-3 聚合物生物可分解性的優點生成可回收資源示意圖 3
Scheme 1-4 屬烷氧錯化合物為起始劑對環酯類進行開環聚合反應 4
Scheme 1-5 β-diketiminate配位基合成的氮矽基鎂金屬錯化合物及異丙烷氧基鎂金屬錯化合物 4
Scheme 1-6 四芽基的β-diketiminate配位基合成的矽胺基和新丁烷氧基的鎂金屬錯化合物 5
Scheme 1-7 β-diketiminate配位基合成二異丙烷胺基的鎂金屬錯化合物及烷氧基的鎂金屬錯化合物 6
Scheme 1-8 三芽的β-diketiminate配位基合成二異丙烷胺基的鎂金屬錯化合物 7
Scheme 1-9 二配位的ketimine配位基合成出的五配位鎂金屬錯化合物 8
Scheme 1-10 三配位的ketimine配位基合成五配位的烷氧基鎂錯化合物 8
Scheme 1-11 雙芽基吡咯衍生物配位基及ketimine配位基 9
Scheme 2-1-1 錯化合物1之合成反應方程式 10
Scheme 2-1-2 錯化合物2之合成反應方程式 11
Scheme 2-1-3 錯化合物2在溶液中單核與雙核結構之平衡反應式 11
Scheme 2-1-4 化合物2流變現象之平衡反應式 12
Scheme 2-1-5 化合物2在過量四氫呋喃溶液中之平衡反應式 14
Scheme 2-1-6 錯化合物1與DMAMPH配位基在四氫呋喃溶液中之合成反應方程式 16
Scheme 2-1-7 錯化合物3之合成反應方程式 17
Scheme 2-1-8 錯化合物3在溶液中單核與雙核結構之平衡反應式 18
Scheme 2-1-9 錯化合物3流變現象之平衡反應式 18
Scheme 2-1-10 錯化合物4之合成反應方程式 29
Scheme 2-2-1 錯化合物5之合成反應方程式 38
Scheme 2-2-2 錯化合物5在溶液中單核與雙核結構之平衡反應式 38
Scheme 2-2-3 錯化合物6之合成反應方程式 43
Scheme 2-2-4 錯化合物7之合成反應方程式 44
Scheme 3-1-1 錯化合物8、9之合成反應方程式 50
Scheme 3-1-2 錯化合物10、11之合成反應方程式 54
Scheme 3-1-3 錯化合物12之合成反應方程式 57
Scheme 3-1-4 錯化合物13之合成反應方程式 59

表目錄
Table 2-1-1. 時間及兩倍量配位基錯化合物積分之數據 15
Table 2-1-2. 錯化合物2和3以及文獻的選擇性鍵長及鍵角比較 24
Table 2-1-3. Selected Bond Distances (Å) and Angles (deg) for {Mg(DMAMP)[N(SiMe3)2]}2 (2) 26
Table 2-1-4. Selected Bond Distances (Å) and Angles (deg) for {Mg(DEAMP)[N(SiMe3)2]}2 (3) 29
Table 2-1-5. 錯化合物4以及文獻的選擇性鍵長(Å)與鍵角(°)比較 32
Table 2-1-6. 錯化合物2.3.4的選擇性鍵長(Å)與鍵角(°)比較 33
Table 2-1-7. Selected Bond Distances (Å) and Angles (deg) for {Mg(TBAMP)[N(SiMe3)2]}2 (4) 36
Table 2-2-1. Selected Bond Distances (Å) and Angles (deg) for {Mg(OCMeCHCMeNAr)[N(SiMe3)2]}2 (5) 42
Table 2-2-2. 錯化合物5和7以及文獻的選擇性鍵長及鍵角比較 45
Table 2-2-3. Selected Bond Distances (Å) and Angles (deg) for {Mg(OCMeCHCMeNAr´)[N(SiMe3)2]}2 (7) 47
Table 2-2-4. 錯化合物7和文獻的選擇性鍵長及鍵角比較 48
Table 3-1-1. 錯化合物9以及文獻的選擇性鍵長及鍵角比較 51
Table 3-1-2. Selected Bond Distances (Å) and Angles (deg) for Mg(DMAMP)2(THF)2 (9) 53
Table 3-1-3. 錯化合物9和11的選擇性鍵長及鍵角比較 55
Table 3-1-4. Selected Bond Distances (Å) and Angles (deg) for Mg(DMAMP)2(THF)2 (11) 56
Table 3-1-5. Selected Bond Distances (Å) and Angles (deg) for Mg(OCMeCHCMeNAr)2(THF)(12) 59
Table 3-1-6. Selected Bond Distances (Å) and Angles (deg) for Mg(OCMeCHCMeNAr)2(Et2O) (13) 61
Table 3-1-7. 錯化合物12和13以及文獻的選擇性鍵長及鍵角比較 62
Table 4-1-1. 錯化合物2.3及4對環己內酯的開環聚合反應 63
Table 4-2-1. 錯化合物5.6及7對環己內酯的開環聚合反應 64
(1) Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. Soc. 1957, 79, 2975.
(2) (a) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99. (b) Sinn, H.; Kaminsky, W.; Vollmer, H. J.; Woldt, R. Angew. Chem. Int. Ed. Engl. 1980, 19, 390.
(3) (a) Byrne, C. M.; Allen, S. D.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 11404. (b) Allen, S. D.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 14284. (c) Rieth, L. R.; Moore, D. R.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2002, 124, 15239. (d) Cheng, M.; Moore, D. R.;Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.;Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738.
(4) (a) Bai, G.; Singh, S.; Roesky, H. W.; Noltemeyer, M.; Schmidt, H.-G.
J. Am. Chem. Soc. 2005, 127, 3449. (b) Zhu, H.; Chai, J.; He, C.; Bai, G.; Roesky, H. W.; Jancik, V.; Schmidt, H.-G.; Noltemeyer, M.
Organometallics 2005, 24, 380. (c) Jancik, V.; Pineda, L. W.; Pinkas, J.; Roesky, H. W.; Neculai, D.; Neculai, A. M.; Regine H.-I. Angew. Chem. Int. Ed. Engl. 2004, 116, 2194.
(5) (a) Avent, A. G.; Crimmin, M. R.; Hill, M. S.; Hitchcock, P. B. Dalton Trans. 2005, 2, 278. (b) El-Kaderi, H. M.; Xia, A.;Heeg, M. J.; Winter, C. H. Organometallics 2004, 23, 3488.
(6) (a) Radzewich, C. E.; Guzei, I. A.; Jordan, R. F. J. Am. Chem. Soc. 1999, 121, 8673. (b) Radzewich, C. E.; Coles, M. P.; Jordan, R. F. J. Am. Chem. Soc. 1998, 120, 9384.
(7) (a) Hsu, S.-H.; Chang, J.-C.; Lai, C.-L.; Hu, C.-H.; Lee, H. M.; Lee, G.-H.; Peng, S.-M.; Huang, J.-H. Inorg. Chem. 2004, 43, 6786. (b) Yu, R.-C.; Hung, C.-H.; Huang, J.-H.; Lee, H.-Y.; Chen, J.-T. Inorg. Chem. 2002, 41, 6450. (c) Li, X.-F.; Dai, K.; Ye, W.-P.; Pan, L.; Li, Y.-S. Organometallics 2004, 23, 1223.
(8) (a) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 16326. (b) Mason, A. F.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 10798. (c) Getzler, Y. D. Y. L.; Kundnani, V.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2004, 126, 6842.
(9) Mecking S. Angew. Chem. Int. Ed. 2004, 43, 1078.
(10) (a) Cabaret, O.D.;Vaca, B.M.;Bourissou, D. Chem. Rev. 2004, 104, 6147. (b) O’Keefe, B. J.;Hillmyer, M. A.;Tolman, W.B. Dalton Trans. 2001, 2215. (c) Wu, J-C;Lin, C-C Coord. Chem. Rev. 2006, 250, 602.
(11) (a) Kricheldorf, H. R. Makromol. Chem. 1993, 194, 1665. (b) Chisholm, M. H.;Lin, C-C.;Galluccia, J. C.;Ko, B.-T. Dalton Trans. 2003, 406.
(12) (a) Aubrecht, K. B.;Hillmyer, M. A.;Tolman, W. B. Macromolecules. 2002, 35, 644. (b) Nimitsiriwat, N.;Marshall, E. L.;Gibson, V. C.;Elsegood, M. R. J.;Dale, S. H. J. Am. Chem. Soc. 2004, 126, 13598.
(13) (a) O’Keefe, B. J.;Breyfogle, L. E.;Hillmyer, M. A.;Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 4384. (b) Wang, X.;Liao, K.;Quan, D.;Wu, Q. Macromolecules. 2005, 38, 4611.
(14) Malcolm H. Chisholm, Judith C. Gallucci, Khamphee Phomphrai. Inorg. Chem. 2004, 43, 6717.
(15) Geoffrey W. Coates.;Bradley M. Chamberlain, Ming Cheng, David R. Moore, Tina M. Ovitt, Emil B. Lobkovsky. J. Am. Chem. Soc. 2001, 123, 3229
(16) Malcolm H. Chisholm, Judith C. Gallucci, and Khamphee Phomphrai. Inorg. Chem. 2005, 44, 8004.
(17) Malcolm H. Chisholm, Judith Gallucci, and Khamphee Phomphrai. Inorganic Chemistry, 2002, 41, 2785.
(18) Andrew P. Dove, Vernon C. Gibson, Edward L. Marshall, Andrew J. P. White, David J. Williams. Dalton Trans. 2004, 570.
(19) Jui-Hsien Huang, Wen-Yi Lee, Hsiang-Hua Hsieh, Chun-Chin Hsieh, Hon Man Lee, Gene-Hsiang Lee, Tsun-Cheng Wu, Shiow-Huey Chuang. Journal of Organometallic Chemistry. 2007, 692, 1131.
(20) Chu-Chieh Lin, Hui-Yi Tang, Hsuan-Ying Chen, Jui-Hsien Huang. Macromolecules. 2007, 40, 8855.
(21) Yongjun Tang, Lev N. Zakharov, Arnold L. Rheingold, Richard A. Kemp. Organometallics 2005, 24, 836.
(22) Matthias WesterhausenU. Coordination Chemistry Reviews, 1998, 176, 157.
(23) Janusz Lewin´ski, Maciej Dranka, Izabela Kraszewska, Witold Sliwin´skia and Iwona Justyniak. Chem. Commun. 2005, 4935.
(24) Anthony J. Arduengo, III, Fredric Davidson, Roland Krafczyk, William J. Marshall, and Matthias Tamm. Organometallics. 1998, 17, 3375.
(25) Hans-Herbert Brintzinger, Hans-Robert H. Damrau, Armin Geyer, Marc- Heinrich Prosenc, Armin Weeber, Frank Schaper. Journal of Organometallic Chemistry. 1998, 553, 331.
(26) Charles H. Winter, Hani M. El-Kaderi, Aibing Xia, Mary Jane Heeg. Organometallics 2004, 23, 3488.
(27) Addison, A. W.;Rao, T. N.;Reedijk, J.;Van Rijin, J;Verschoor, G. C. J. Chem. Soc. Dalton Trans. 1984, 7, 1349.
(28) Matthias Westerhausen, Markus Reiher, Dirk Olbert, Alexander Kalisch, Nicole Herzer, Helmar Görls, Peter Mayer, Lian Yu. Z. Anorg. Allg. Chem. 2007, 633, 893.
(29) Parks, J. E.; Holm, R. H.; Inorg. Chem. 1966, 7, 361.
(30) Yu, R. –C.; Hung, C. –H.; Huang, J. –H.; Lee, H. –Y.; Chen, J. –T. Inorg. Chem. 2002, 41, 6450.
(31) Herz, W.; Dittmer, K.; Cristol, S. J. J. Am. Chem. Soc. 1947, 69, 1698
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top