跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 20:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:江佳穎
研究生(外文):Jia-Ying Jiang
論文名稱:螯蝦(類)甲殼類升血糖荷爾蒙基因:分子選殖及基因表現之組織分佈和定量分析
論文名稱(外文):Crustacean hyperglycemic hormone (CHH) and CHH-like peptide genes : molecular cloning, and tissue distribution and quantification of gene expression
指導教授:李奇英
指導教授(外文):Chi-Ying Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:生物學系
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:114
中文關鍵詞:甲殼類升血糖荷爾蒙克氏螯蝦基因表現定量分析
外文關鍵詞:crustaceancrayfishCHHgene expression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:199
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近幾年的研究中我們已知道在克氏螯蝦 (Procambarus clarkii) 中存在著不同的甲殼類升血糖荷爾蒙 (crustacean hyperglycemic hormone,CHH) 分子,目前總共發現了六個CHH分子分別為CHH1、CHH1-L、CHH2、CHH2-L、Hem-CHH1和Hem-CHH2。 本研究使用分子選殖的技術進一步選殖甲殼類血球升血糖荷爾蒙前驅原和未轉錄區域的cDNA序列。此外利用RT-PCR去偵測CHH mRNA在個組織的分佈,發現這些CHH或類CHH的分子在很多組織表現,包括血球、眼柄神經節、腦神經節、圍食道神經、體神經節、腹部神經、腸、心臟和肌肉。另一方面,將脂多醣 (lipopolysaccharide) 注射到螯蝦體內觀察其總血球數和CHH2-L 的基因表現。本研究中所用測定基因表現量的方法為即時相對定量PCR (real time relative quantitative PCR) ,將目標基因的閥值週期 (threshold cycle,Ct) 經過參考基因標準化後比較不同樣本中目標基因的相對表現量。結果發現注射LPS後其總血球數明顯的下降,且CHH2-L的表現量出現明顯上升的趨勢。之後也進行LPS刺激下三種CHH (CHH2-L、Hem-CHH2和CHH1-L) 在神經組織中的基因表現量分析,同樣發現CHH2-L、Hem-CHH2的表現量呈現上升的趨勢,而CHH1-L則沒有明顯改變。最後總結我們可以知道CHH在螯蝦體內呈現廣泛的分佈,而部份CHH分子可能參與其體內的免疫調節。除了以上結果外,仍須進行功能和結構的研究才能更深入探討。
Over the years, researchers have found there are different CHH (crustacean hyperglycemic hormone) molecules in crustaceans. According to those studies there were six CHH/CHH-like peptides in crayfish (Procambarus clarkii ) :CHH1、CHH1-L、CHH2、CHH2-L、Hem-CHH1 and Hem-CHH2. Methods of molecular cloning resulted in full length sequence of hemocyte CHHs (involve untranslated region, UTR). Moreover with RT-PCR analysis, these CHH/CHH-like peptide genes were widely expressed in many tissues (hemocyte, eyestalk ganglia, cerebral ganglia, circum-oesophageal nerve, thoracic ganglia, abdominal ganglia, gut, heart and muscle). On the other hand, we investigated the effects of lipopolysaccharide (LPS) on total hemocyte count (THC) and CHH2-L gene relative expression. We gained the threshold cycle (Ct) of target gene and normalized with reference gene Ct, then compared target gene’s relative expression ratios of different samples. Following LPS injection (up to 24 hours post-injection) THC decreased significantly and CHH2-L transcript levels increased significantly over time after LPS injection. Afterward we detected three CHH (CHH2-L, Hem-CHH2 and CHH1-L) relative expression in different nervous tissues after LPS injection, found CHH2-L and Hem-CHH2 transcripts levels were higher than those in none-injection samples. The combined results suggest that CHH structural variants widely expressed and at least for CHHs might be involved in immunomodulation.
中文摘要 Ⅰ
Abstract Ⅱ
目錄 Ⅲ
前言 1
材料與方法 10
結果 24
討論 32
結論 45
參考文獻 46
表 53
圖 54
附件 98
吳素華 (2005) 甲殼類血球細胞中升血糖荷爾蒙之基因選殖與分子特徵研究。國立彰化師範大學生物學系研究所碩士論文。

陳香吟 (2005) 白蝦 (Litopenaeus Vannamei) 蛻殼抑制荷爾蒙分子研究:基因選殖、重組蛋白表現與蛻殼週期中基因表現之變化。國立彰化師範大學生物學系研究所碩士論文。

蔡國瑋 (2005) 紅腳蟳 (Scylla olivacea) 甲殼類升血糖荷爾蒙異構型之分子特徵與生理功能之研究。國立彰化師範大學生物學系研究所碩士論文。

Andrew RD. 1983. Neurosecretory pathways supplying the neurohemal organs in crustacean. In Neurohemal Organs of Arthropods (ed. Gupta AP), pp. 90-117. Charles C. Thomas Publisher, Springfield, Illinois.

Chang ES, Prestwich GD, Bruce MJ. 1990. Amino acid sequence of a peptide with both molt-inhibiting and hyperglycemic activities in the lobster, Homarus americanus. Biochemical and Biophysical Research Communications 171: 818-826.

Chang ES, Keller R, Chang SA. 1998. Quantification of crustacean hyperglycemic hormone by ELISA in hemolymph of the lobster, Homarus americanus, following various stresses. General and Comparative Endocrinology 111:359-366.

Chang ES, Chang SA, Beltz BS, Kravitz EA. 1999a. Crustacean hyperglycemic hormone in the lobster nervous system: localization and release from cells in the subesophageal ganglion and thoracic second root. The Journal of Comparative Neurology 414:50-56.

Cárdenas W, Dankert JR, Jenkins JA. 2004. Flow cytometric analysis of crayfish haemocytes activated by lipopolysaccharides. Fish & Shellfish Immunology 17(3):223-233

Chen SH, Lin CY, Kuo CM. 2004. Cloning of two crustacean hyperglycemic hormone isoforms in freshwater giant prawn (Macrobrachium rosenbergii): evidence of alternative splicing. Marine Biotechnology 6:83-94.

Chung JS, Dircksen H, Webster SG. 1999. A remarkable, precisely timed release of hyperglycemic hormone from endocrine cells in the gut is associated with ecdysis in the crab Carcinus maenas. Proceedings of the National Academy of Sciences of the United States of America 96:13103-13107.

Chung JS, Webster SG. 1996. Does the N-terminal pyroglutamate residue have any physiological significance for crab hyperglycemic neuropeptides? European Journal of Biochemistry 240:358-364.

Čikoš Štefan, Bukovská Alexandra, Koppel J. 2007. Relative quantification of mRNA: comparison of methods currently used for real-time PCR data analysis. BMC Molecular Biology 8:113

Davey ML, Hall MR, Willis RH, Oliver RW, Thurn MJ, Wilson KJ. 2000. Five crustacean hyperglycemic family hormones of Penaeus monodon: Complementary DNA sequence and identification in single sinus glands by electrospray ionization-fourier transform mass spectrometry. Marine Biotechnology 2:80-91.

De Kleijn DP, Janssen KP, Martens GJ, Van Herp F. 1994. Cloning and expression of two crustacean hyperglycemic-hormone mRNAs in the eyestalk of the crayfish Orconectes limosus. European Journal of Biochemistry / FEBS 224:623-629.

De Kleijn DPV, De Leeuw EP, Van Den Berg MC, Martens GJ, Van Herp F. 1995. Cloning and expression of two mRNAs encoding structurally different crustacean hyperglycemic hormone precursors in the lobster Homarus americanus. Biochimica et Biophysica Acta (BBA)/Gene Structure and Expression 1260:62-66.

De Kleijn DPV, Van Herp F. 1995. Molecular biology of neurohormone precursors in the eyestalk of Crustacea. Comparative Biochemistry & Physiology. Part B, Biochemistry & Molecular Biology 112: 573-579.

De Kleijn DPV, Van Herp F. 1998. Involvement of the hyperglycemic neurohormone family in the control of reproduction in decapod crustaceans. Invertebrate Reproduction and Development 33:263-272.

Dircksen H, Heyn U. 1998. Crustacean hyperglycemic hormone-like peptides in crab and locust peripheral intrinsic neurosecretory cells. Annals of the New York Academy of Sciences 839:392-394.

Dircksen H, Soyez D. 1998. The lobster thoracic ganglia-pericardial organ neurosecretory system: A large source of novel crustacean hyperglycemic hormone-like peptides. The Proceeding of the 19th Conference of European Comparative Endocrinologists, Nijmegen, The Netherlands.

Dircksen H, Bocking D, Heyn U, Mandel C, Chung JS, Baggerman G, Verhaert P, Daufeldt S, Plosch T, Jaros PP, Waelkens E, Keller R, Webster SG. 2001. Crustacean hyperglycaemic hormone (CHH)-like peptides and CHH-precursor-related peptides from pericardial organ neurosecretory cells in the shore crab, Carcinus maenas, are putatively spliced and modified products of multiple genes. The Biochemical journal 356:159-170.

Escamilla-Chimal EG, Van Herp F, Fanjul-Moles ML. 2001. Daily variations in crustacean hyperglycaemic hormone and serotonin immunoreactivity during the development of crayfish. The Journal of Experimental Biology 204:1073-1081


Faniul-Moles ML. 2006. Biochemical and functional aspects of crustacean hyperglycemic hormone in decapod crustaceans: review and update. Comparative Biochemistry and Physiology Part C 142:390-400

Gao Y, Gillen C M, Wheatly MG. 2006. Molecular characterization of the sarcoplasmic calcium-binding protein (SCP) from crayfish Procambarus clarkii. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 144(4):478-487

Ginzinger DG. 2002. Gene quantification using real-time quantitative PCR An emerging technology hits the mainstream Experimental Hematology 30(6):503-512

Gu PL, Chan SM. 1998. The shrimp hyperglycemic hormone-like neuropeptide is encoded by multiple copies of genes arranged in a cluster. FEBS letters 441:397-403.

Harvant F, Mathieu J, Garin D, Freminet A. 1996. Behavioral, ventilatory, and metabolic responses of the hypogean amphipod Niphargus virei and the epigean isopod Asellus aquaticus to severe hypoxia and subsequent recovery. Physiological zoology 69:1277-1300.

Huberman A, Aguilar MB, Brew K, Shabanowitz J, Hunt DF. 1993. Primary structure of the major isomorph of the crustacean hyperglycemic hormone (CHH-I) from the sinus gland of the Mexican crayfish Procambarus bouvieri (Ortmann): interspecies comparison. Peptides 14:7-16.

Huberman A. 2000. Shrimp endocrinology. A review. Aquaculture 191:191-208

Johansson MW, Keyser P, Sritunyalucksana K, and Söderhäll K. 2000. Crustacean haemocytes and haematopoiesis. Aquaculture 191: 45-52.

Katayama H, Ohira T, Aida K. 2002. Significance of a carboxyl-terminal amide moiety in the folding and biological activity of crustacean hyperglycemic hormone. Peptides 23(9):1537-1546

Kegel G, Reichwein B, Weese S, Gaus G, Peter-Katalinic J, Keller R. 1989. Amino acid sequence of the crustacean hyperglycemic hormone (CHH) from the shore crab, Carcinus maenas. FEBS letters 255:10-14.

Kegel G, Reichwein B, Tensen CP, Keller R. 1991. Amino acid sequence of crustacean hyperglycemic hormone (CHH) from the crayfish, Orconectes limosus: emergence of a novel neuropeptide family. Peptides 12:909-913.

Keller R. 1992. Crustacean neuropeptides : structure, functions, and comparative aspects. Experientia 48:439-448.

Keller R, Jaros PP, Kegel G. 1985. Crustacean hyperglycemic neuropeptides. American zoologist 25:207-221.

Lacombe C, Grève P, Martin G. 1999. Overview on the sub-grouping of the crustacean hyperglycemic hormone family. Neuropeptides 33:71-80

Lee KJ, Doran RM, Mykles DL. 2007. Crustacean hyperglycemic hormone from the tropical land crab, Gecarcinus lateralis: cloning, isoforms, and tissue expression. General and Comparative Endocrinology 154(1-3):174-183

Lee SY, Söderhäll K. 2002. Early events in crustacean innate immunity. Fish & Shellfish Immunology 12:421-437.

Lehmann U, Kreipe H. 2001. Real-time PCR analysis of DNA and RNA extracted from formalin-fixed and paraffin-embedded biopsies. Methods 25(4):409-418

Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using Real-Time quantitative PCR and the 2−ΔΔCT Method. Methods 25(4):402-408

Liu CH, Cheng W, Chen JC. 2005. The peroxinectin of white shrimp Litopenaeus vannamei is synthesised in the semi-granular and granular cells, and its transcription is up-regulated with Vibrio alginolyticus infection. Fish & shellfish Immunology 18: 431-444

Liu L, Laufer H, Wang Y, Hayes T. 1997. A neurohormone regulating both methyl farnesoate synthesis and glucose metabolism in a crustacean. Biochemical and Biophysical Research Communications 237:694-701.

Lorenzon S, Giulianini PG, Ferrero EA. 1997. Lipopolysaccharide-induced hyperglycemia is mediated by CHH release in crustaceans. General and Comparative Endocrinology 108:395-405.

Lorenzon S, Pasqual P, Ferrero EA. 2002. Different bacterial lipopolysaccharides as toxicants and stressors in the shrimp Palaemon elegans. Fish & Shellfish Immunology 13:27-45.

Lorenzon S, Edomi P, Giulianini PG, Mettulio R, Ferrero EA. 2004. Variation of crustacean hyperglycemic hormone (cHH) level in the eyestalk and haemolymph of the shrimp Palaemon elegans following stress. The Journal of Experimental Biology 207:4205-4213.

Lorenzon S. 2005. Hyperglycemic stress response in Crustacea. ISJ 2:132-141

Lu W, Wainwright G, Webster SG, Rees HH, Turner PC. 2000. Clustering of mandibular organ-inhibiting hormone and moult-inhibiting hormone genes in the crab, Cancer pagurus, and implications for regulation of expression. Gene 253(2):197-207

Martin G, Sorokine O, Van Dorsselaer A. 1993. Isolation and molecular characterization of a hyperglycemic neuropeptide from the sinus gland of the terrestrial isopod Armadillidium vulgare (Crustacea). European Journal of Biochemistry 211:601-607.

Newcomb RW. 1983. Peptides in the sinus gland of cardisoma carnifex: isolation and amino acid analysis. Journal of Comparative Physiology 153:207-221.

Ollivaux C, Soyez D. 2000. Dynamics of biosynthesis and release of crustacean hyperglycemic hormone isoforms in the X-organ-sinus gland complex of the crayfish Orconectes limosus. European Journal of Biochemistry 267:5106-5114.

Okumura T. 2007. Effects of lipopolysaccharide on gene expression of antimicrobial peptides (penaeidins and crustin), serine proteinase and prophenoloxidase in haemocytes of the Pacific white shrimp, Litopenaeus vannamei. Fish & shellfish Immunology 22:68-76

Santos EA, Keller R. 1993. Crustacean hyperglycemic hormone (CHH) and the regulation of carbohydrate metabolism : current perspectives. Comparative Biochemistry and Physiology 106A:405-411.

Santos EA, Nery LEM, Keller R, Concalves AA. 1997. Evidence for the involvement of the crustacean hyperglycemic hormone in the regulation of lipid metabolism. Physiological zoology 70:415-420.

Smith EM, Galin FS, LeBoeuf RD, Coppenhaver DH, Harbour DV, Blalock JE. 1990. Nucleotide and amino acid sequence of lymphocyte-derived corticotropin: endotoxin induction of a truncated peptide. Proceedings of the National Academy of Sciences of the United States of America 87:1057-1060.

Söderhäll K, Cerenius L. 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Current Opinion in Immunology 10:23-28.

Soyez D, Van Herp F, Rossier J, Le Caer JP, Tensen CP, Lafont R. 1994. Evidence for a conformational polymorphism of invertebrate neurohormones. D-amino acid residue in crustacean hyperglycemic peptides. The Journal of Biological Chemistry 269:18295- 18298.

Soyez D. 1997. Occurrence and diversity of neuropeptides from the crustacean hyperglycemic hormone family in arthropods. A short review. Annals of the New York Academy of Sciences 814:319-323.

Speed SR, Baldwin J, Wong RJ, Wells RM. 2001. Metabolic characteristics of muscles in the spiny lobster, Jasus edwardsii, and responses to emersion during simulated live transport. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 128(3):435-444

Spicer JI, Hill AD, Taylor AC, Strang RHC. 1990. Effect of aerial exposure on concentrations of selected metabolites in blood of the Norwegian lobster Nephrops norvegicus (Crustacea: Nephropidae). Marine Biology 105:129-135

Stefano GB, Salzet-Raveillon B, Salzet M. 1999. Mytilus edulis hemolymph contains pro-opiomelanocortin: LPS and morphine stimulate differential processing. Brain Research. Molecular Brain Research 63:340-350.

Stentiford GD, Chang ES, Chang SA, Neil DM. 2001. Carbohydrate dynamics and the crustacean hyperglycemic hormone (CHH): effects of parasitic infection in Norway lobsters (Nephrops norvegicus). General and Comparative Endocrionology 121:13-22.

Tensen CP, De Kleijn DP, Van Herp F. 1991a. Cloning and sequence analysis of cDNA encoding two crustacean hyperglycemic hormones from the lobster Homarus americanus. European Journal of Biochemistry 200:103-106.

Toullec JY, Serrano L, Lopez P, Soyez D, Spanings-Pierrot C. 2006. The crustacean hyperglycemic hormones from an euryhaline crab Pachygrapsus marmoratus and a fresh water crab Potamon ibericum: eyestalk and pericardial isoforms. Peptides 27(6): 1269-1280.

Vargas-Albores F, Yepiz-Plascencia G. 2000. Beta glucan binding protein and its role in shrimp immune response. Aquaculture 191:12-21.

Webster SG, Keller R. 1986. Purification, characterization and amino acid composition of the putative moult-inhibiting hormone (MIH) of Carcinus maenas (Crustacea, Decapoda). Journal of Comparative Physiology B 156:617-624.

Webster SG. 1996. Measurement of crustacean hyperglycemic hormone levels in the edible crab Cancer pagurus during emersion stress. The Journal of Exoerimental Biology 199:1579-1585.

Webster SG., Dircksen H, and Chung JS. 2000. Endocrine cells in the gut of the shore crab Carcinus maenas immunoreactive to crustacean hyperglycemic hormone and its precursor-related peptide. Cell and Tissue Research 300:193-205.

Yang WJ, Aida K, Nagasawa H. 1997. Amino acid sequences and activities of multiple hyperglycemic hormones from the Kuruma prawn, Penaeus japonicus. Peptides 18:479-485.

Yasuda A, Yasuda Y, Fujita T, Naya Y. 1994. Characterization of crustacean hyperglycemic hormone from the crayfish (Procambarus clarkii): Multiplicity of molecular forms by stereoinversion and diverse functions. General and Comparative Endocrinology 95:387-398.

Zhang Z, Chen D, Wheatly MG. 2000. Cloning and characterization of sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) from crayfish axial muscle. Sarco/Endoplasmic Reticulum Ca(2+)-ATPase. The Journal of Experimental Biology 203:3411-3423
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊