跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/12 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:藍彬文
研究生(外文):Lan, Bin-Win
論文名稱:乙醇、LPG及碳酸二甲酯(DMC)對SI噴射引擎排氣污染之研究
論文名稱(外文):The Study of Ethanol, LPG and Dimethyl Carbonate on Exhaust Emission in an SI Engine
指導教授:楊 學 成
指導教授(外文):Yang, Shyue-Cheng
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:車輛科技研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:57
中文關鍵詞:含氧添加劑排氣污染物乙醇碳酸二甲酯液化石油氣單晶片
外文關鍵詞:Oxygen containing additivesExhaust emissionsEthanolDMCLPGMCS-51
相關次數:
  • 被引用被引用:4
  • 點閱點閱:533
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要

在台灣,過去這幾年來受到液態燃料價格高漲及環保意識抬頭的影響之下,使得替代能源獲得重視。在本篇論文中,利用單缸四行程火花點火引擎來進行實驗性的探討液化石油氣 (LPG) 及含氧添加劑與無鉛汽油混合燃料對排氣污染物之影響。實驗結果指出,使用乙醇汽油與碳酸二甲酯 (DMC) 汽油混合燃料皆可獲得較低的CO和HC。另一方面,使用含氧混合燃料對於改善NOX的效果並不明顯。另外,使用含氧混合燃料會提高燃料消耗率,主要的原因為含氧混合燃料的熱值較低於無鉛汽油。
在本文中,吾人利用MCS-51單晶片進行LPG燃料噴射系統之開迴路控制。實驗結果表示,在SI引擎上且與汽油燃料系統相同的操作條件下使用LPG燃料系統,可以有效的減少排氣污染物。整體而言,LPG對於減少較為主要的排氣污染物有正面的影響,譬如CO、CO以及NOX。文中主要實驗性地進行研究探討替代能源對SI引擎排氣污染物之影響。
Abstract

In Taiwan, the increasing cost of liquid fuels derived from crude oil and growing concern about environmental pollution have increased interest in alternative engine fuels for the past few years. In this thesis, the effect of oxygen containing additives on gasoline blended fuels and LPG fuel on exhaust emissions were investigated for different engine speeds in a single cylinder, four stroke, spark ignition engine. The results indicate that CO and HC exhaust emissions are lower with the use of ethanol-gasoline and DMC-gasoline blended fuels as compared to the use of unleaded gasoline. On the other hand, the effect of ethanol-gasoline and DMC-gasoline blended fuels on NOX exhaust emission is insignificant. Using oxygen containing additives can increase fuel consumption as a result of the heating value of the blended fuels being lower than that of unleaded gasoline.
In this thesis, the open-loop of LPG injection system was controlled by MCS-51 single chip. Comparisons show that if LPG fuel SI engine is operated at the same conditions with those of gasoline fuel SI engine, significant improvements in exhaust emissions can be achieved. In summary, LPG has positive effects on main of exhaust emissions such as CO, CO2 and NOX.
CONTENT
List of Tables……………………………………………………Ⅲ
List of Figures …………………………………………………Ⅳ
Chapter 1 Introduction…………………………………………1
1-1 Background and Motive………………………………1
1-2 Literature Review ……………………………………2
1-3 Brief Account of this Research…………………5
Chapter 2 Background Knowledge………………………………6
2-1 Air-Fuel Ratio………………………………………… 6
2-2 Hydrocarbons (HC)………………………………………8
2-2-1 Nonstoichiometric Air-Fuel Ratio………………8
2-2-2 IncompleteCombustion…………………………………8
2-2-3 Crevice Volumes………………………………………..9
2-2-4 Leak Past the ExhaustValve…………………………9
2-2-5 Valve Overlap………………………………………...10
2-2-6 Deposits on Combustion Chamber Walls…………10
2-2-7 Oil on Combustion Chamber Walls…………………10
2-3 Carbon Monoxide (CO)…………………………………….12
2-4 Oxides of Nitrogen (NOx)……………..12
Chapter 3 Experimental apparatus and Procedure……...……14
3-1 Test Fuels………………………………………14
3-2 5 Gas Analyzer……………………………...14
3-3 FLUKE 98 Automobile Scope Meter…………17
3-4 KYMCO DTOOL5.0 PDA Diagnostic Tool……18
3-5 Test Engine……………………………………19
3-6 LPG Injector…………………………………..21
3-7 LPG Injector Control Strategy……………22
3-7-1 Operation of Fuel Injection Systems…………………………..22
3-7-2 Design of a Mode Control Law for the LPG Injection System.23
3-8 MCS-51 Single Chip………………27
3-9 Experimental Procedures of Oxygen Containing Additives…30
3-10 Experimental Procedures of LPG Injection System…32
Chapter 4 Results and Discussion………………………………35
4-1 The Results and Discussion that Oxygen Containing Additives Compare to Gasoline………………………………………………35
4-1-1 Equivalence Air-Fuel Ratio ( )…35
4-1-2 Carbon Monoxide ( CO )………………37
4-1-3 Hydrocarbon ( HC )………………....39
4-1-4 Carbon Dioxide ( CO2 )…………….…41
4-1-5 Nitrogen Oxides ( NOX )………………43
4-1-6 Exhaust Temperature……………………44
4-1-7 Fuel consumption………………………..45
4-2 The Results and Discussion of LPG Compare to Gasoline………..47
Chapter 5 Conclusions……………………………..51
5-1 Conclusions from this thesis………………………………………51
5-2 Future Work…………………………………………..52
References…………..……………………………………………53

List of Tables

Table 3-1 Some properties of gasoline, LPG, ethanol and DMC……………15
Table 3-2 Some properties of 5 gas analyzer………………………………..16
Table 3-3 Sanyang engine specifications……………………………...…….19
Table 3-4 KYMCO engine specifications…………………………………..20

List of Figures

Figure 2-1 Emission from an SI engine as a function of equivalence ratio………………………………………………….………..11
Figure 3-1 IM-2400 5 gas analyzer………………………………………15
Figure 3-2 Fluke 98 automobile scope meter…………………………….17
Figure 3-3 KYMCO DTOOL5.0 Diagnostic Tool………………………..18
Figure 3-4 The human machine interface of DTOOL5.0…………………18
Figure 3-5 The exteriority of the Sanyang Company’s engine……………20
Figure 3-6 The exteriority of the KYMCO motorcycle…………………..21
Figure 3-7 LPG injector…………………………………………………..22
Figure 3-8 Simplified electronic fuel-injection system…………………..23
Figure 3-9 The calculation and measure of equivalence ratio…………….26
Figure 3-10 The injector signal was controlled by MCS-51……………….27
Figure 3-11 AT89S51 single chip pin data…………………………………28
Figure 3-12 LPG injector control circuit……………………………………29
Figure 3-13 The flowchart of program in MCS-51…………………………29
Figure 3-14 The stereogram of LPG injector control circuit…………...…..30
Figure 3-15 The schematic diagram of the engine and its instrumentation...31
Figure 3-16 Flowchart of engine test procedures for oxygen containing additives……………………………………………………….32
Figure 3-17 Schematic diagram of the LPG injection system………….34
Figure 3-18 Flowchart of engine test procedures for LPG injector system.
…………………………………………………………………34
Figure 4-1 The effect of oxygen contain additives add to fuels on the equivalence air-fuel ratio..........................................................36
Figure 4-2 The effect of oxygen contain additives add to fuels on CO emission………………………………………………………38
Figure 4-3 The effect of oxygen contain additives add to fuels on HC emission………………………………………………………40
Figure 4-4 The effect of oxygen contain additives add to fuels on CO2 emission……………………………………………………….42
Figure 4-5 The effect of oxygen contain additives add to fuels on NOX emission………………………………………………………43
Figure 4-6 The effect of oxygen contain additives add to fuels on exhaust temperature……………………………………………………44
Figure 4-7 The effect of oxygen contain additives add to fuels on the fuel consumption…………………………………………………..46
Figure 4-8 The effects of LPG compare to unleaded gasoline on CO emission……………………………………………………….48
Figure 4-9 The effects of LPG compare to unleaded gasoline on CO2 emission………………………………………………………48
Figure 4-10 The effects of LPG compare to unleaded gasoline on HC emission……………………………………………………….49
Figure 4-11 The effects of LPG compare to unleaded gasoline on NOX emission……………………………………………………….50
Figure 4-12 The effects of LPG compare to unleaded gasoline on exhaust temperature……………………………………………………50
References

[1] Lutz B.R., Stanglmaier R.H., Matthews R.D., Cohen J., Wicker R., 1998. The effects of fuel composition, system design, and operating conditions on in-system vaporization and hot start of a liquid-phase LPG injection system. SAE Paper, No. 981388, Presentation at the Society of Automotive Engineers, International spring fuels and lubricants meeting and exposition Dearborn, Michigan, May 4-6.
[2] Thring R.H., 1983. Alternative fuels for spark-ignition engines. SAE Paper, No. 831685.
[3] Beer T., Grant B., Williams D., Watson H., 2002. Fuel-cycle greenhouse gas emissions from alternative fuels in Australian heavy vehicle. Atmospheric Environment 36, 753-763.
[4] Baron J., Bulewicz E.M., Zukowski W., Kandefer S., Pilawska M., 2002. Combustion of hydrocarbon fuels in a bubbling fluidized bed. Combust Flame 128, 410-421.
[5] Dagaut P., Ali H., 2003. Kinetics of oxidation of a LPG blend mixture in a JSR: Experimental and modeling study. Fuel 82, 475-480.
[6] Kivi J., Niemi A., Nylund N.O., et al., 1992. Use of MTBE and ETBE as gasoline reformulation components. SAE Technical Paper, No. 922379.
[7] Noorman M.T., 1993. The effect of MTBE, DLPE and TAME on vehicle emissions. SAE Technical Paper Series, No. 932668.
[8] Mennear J.H., 1997. Carcinogenicity studies on MTBE: Critical review and interpretation. Risk Anal, 17, 673-681.
[9] Clawges R., Rowe, B., Zogorski, J., 2001. National Survey of MTBE and other VOCs in community drinking-water sources. US Geological Survey Fact Sheet FS-064-01.
[10] USEPA, 1998. MTBE Fact Sheet #1: Overview. EPA 510-F-97-014, U.S. EPA, Office of Solid Waste and Emergency Response, Washington, DC.
[11] Palmer, F.H., 1986. Vehicle performance of gasoline containing oxygenates. International conference on petroleum based Fuels and Automotive applications. Institution of Mechanical Engineers Conference Publications, MEP, London, UK, pp. 36-46.
[12] Li H.L., Prabhu S.K., et al., 1995. The effect of Methanol and Ethanol on the Oxidation of a Primary Reference Fuel Blend in a Motored Engine. SAE Technical Paper Series 950682.
[13] Zervas E., Montagne X., et al., 2002. Emission of alcohols and carbonyl compounds from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environmental Science and Technology 36, 2414-2421.
[14] Zervas E., Montagne X., Lahaye J., 2003. Emissions of regulated pollutants from a spark ignition engine. Influence of fuel and air/fuel equivalence ratio. Environmental Science and Technology 37, 3232-3238.
[15] He B.Q., Wang J.X., Hao J.M., et al., 2003. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmospheric Environment 37, 949-957.
[16] Zervas E., Montagne X., et al., 2004. Influene of fuel and air/fuel equivalence ratio on the emission of hydrocarbons from a SI engine. 1. Experimental findings. Fuel 83 17-18, 2301-2311.
[17] Huseyin S.Y., et al., 2006. Effect of ethanol-gasoline blends on engine performance and exhaust emissions in different compression ratios. Applied Thermal Engineering 26, 2272-2278.
[18] Murayama T., Zheng M., Takemi C., et al., 1995. Simultaneous reductions of smoke and NOx from a DI diesel engine with EGR and dimethyl carbonate. SAE Technical Paper Series 952518.
[19] Abdel-Rahman A.A., Osman M.M., 1997. Experimental investigation on varying the compression ratio of SI engine working under different ethanol-gasoline fuel blends. International Journal of Energy Research 21, 31-40.
[20] Hsieh W.D., Chen R.H., Wu T.L., Lin T.H., 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment 36, 403-410.
[21] Al-Hasan M., 2003. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Conversion and Management 44, 1547-1561.
[22] Badr O., Alsayed N., Manaf M., 1998. A parametric study on the lean misfiring and knocking limits of gas-fuelled spark ignition engines. Appl Therm Eng 18(7), 579-594.
[23] Selim MYE, 2004. Sensitivity of dual fuel engine combustion and knocking limits to gaseous fuel composition. Energy Conversion & Management 45, 411-425.
[24] Bayraktar H., Durgun O., 1998. The effects of using gaseous fuels on engine combustion and performance. The sixth combustion symposium. Istanbul, Turkey, 273-285.
[25] Johnson E., 2003. LPG: A secure, cleaner transport fuel? A policy recommendation for Europe. Energy Policy 31, 1573-1577.
[26] Tanaka M., Warashina M., Itano Y., Tsujimoto Y., Wakamatsu S., 2001. Effects of super-light-duty gasoline and LPG-fueled cars on 16 ambient hydrocarbons at roadsides in Japan. Chemosphere-Globa Change Science 3, 199-207.
[27] Bayraktar H., Durgun O., 2003. Theoretical investigation of using LPG in spark-ignition engines. The first Aegean energy symposium and exhibition. Denizli, Turkey, 284-289.
[28] Chang C.C., Lo J.G., Wang J.L., 2001. Assessment of reducing ozone forming potential for vehicles using liquefied petroleum gas as an alternative fuel. Atmospheric Environment 35, 6201-6211.
[29] Gamas, E.D., Diaz, L., Rodriguez, R., Lopez-Salinas, E., Schifter, I., 1999. Exhaust emissions from gasoline and LPG powered vehicles operating at the altitude of Mexico City. Journal of Air Waste Management Association 49, 1179-1189.
[30] Beroun S., 2001. The development of gas (CNG, LPG and H2) engines for buses and trucks and their emission and cycle variability characteristics. Society of Automotive Engineers Inc., 01-144.
[31] Saleh H.E., 2008. Effect of variation in LPG composition on emissions and performance in a dual fuel diesel engine. Fuel, Available online 12 May.
[32] Chen Z., Konno M., Goto S., 2001. Study on homogenous premixed charge CI engine fueled with LPG. JSAE Review 22(3).
[33] Miller Jothi N.K., Nagarajan G., Renganarayanan S., 2007. Experimental studies on homogeneous charge CI engine fueled with LPG using DEE as ignition enhancer. Renew Energy 32, 1581-1593.
[34] Yeom k., Jin Y., Bae C., 2007. Homogeneous charge compression ignition of LPG and gasoline using variable valve timing in an engine. Fuel 86(4), 494-503.
[35] Choi G.H., Chung Y.J., Han S.B., 2005. Performance and emissions characteristics of a hydrogen enriched LPG internal combustion engine at 1400rpm. International Journal of Hydrogen Energy 30(1), 77-82.
[36] Lee K., Ryu J., 2005. Experimental study of the flame propagation and combustion characteristics of LPG fuel. Fuel 84(9).
[37] Willard W. Pulkrabek, 1997. Engineering Fundamentals of the Internal Combustion Engine.
[38] Payne, William. Embedded Controller Forth for the 8051 Family, Elsevier, 528. ISBN 978-0125475709.
[39] Yunus A. Cengel, Michael A. Boles. Fundamentals of Thermodynamics 1st Edition, McGraw-Hill, ISBN 0-07-123370-9.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊