參考文獻
中文部分
郭輝、劉賀平(2005),基於核的偏最小二乘特徵提取的最小二乘支持向量機迴歸方法,信息與控制,34
楊輝華、王行愚、王勇、何倩(2005),基於KPLS的網路入侵特徵抽取及檢測方法控制與決策,20
王華忠、俞金壽(2005),核函數方法在丙烯腈收率軟測量建模中的應用,華東理工大學學報,31
白裔峰、肖建、於龍(2007),分塊核偏最小二乘法,西南交通大學學報,42
郭輝、劉賀平、王玲(2006),基於最小二乘支持向量機對偶優化问题的核偏最小二乘,北京科技大學學報,28
蔣紅衛、夏結來、張春霞、李園(2007),核偏最小二乖迴歸及其在醫學中的應用,中國衛生統計,24
王凱立、李昀薇(2004),台股指數現貨、期貨與選擇權市場交互動態關聯之探討,東海大學國際貿易學系碩士論文,未出版,台中縣張嘉成(2006),第一次投資台指選擇權就上手(修訂版),易博士出版社
喀什蘭若(2000),K線圖指術指標,經史子集出版社
張真卿(1999),股市技術分析操作勝典,台灣廣廈出版集團
高惠璇(2002),兩個多重相關變量組的統計分析(偏最小二乘迴歸與PLS過程),數理統計與管理,21
英文部分
Bernhard scholkopf,Alexander J.Smola(1998),Learning with Kernels. Phd Thesis, GMD, Birlinghoven
Cheng, W., Wanger, L., and Lin, CH(1996),Forecasting the 30-year US treasury bond with a system of neural networks, Journal of Computational Intelligence in Finance , 1(4),10-15
Cheng-Lung Huang and Cheng-Yi Tsai(2008),A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting,Expert Systems with Applications
Cortes C and Vapnik, V. N , Support vector networks , Machine Leanrning 20, 273-297
Chenn-Jung Huang, Yi-Ta Chuang and Dian-Xiu Yang(2006),Application of Wrapper Approach and SVM to the stock Trend Prediction,The 5th International Conference on Computational
Intelligence in Economics and Finance
C. C. Chang, C. J. Lin,LIBSVM: a library for
support vector machines, Technical Report, Department of Computer Science and Information Engineering, Nation Taiwan University,at http://www.csie.edu.tw/~cjlin/papers/libsvm.pdf
C. Campbell(2002) ,Kernel Methods: A survey of current techniques, Neurocomputing, 48,63-84
Deng-Yiv Chiu and Ping-Jie Chen(2008),Dynamically exploring internal mechanism of stock market by fuzzy-based support vector machines with high dimension input space and genetic algorithm,Expert Systems with Applications
Francis E.H. Tay, Lijuan Cao(2001),Application of support vector machines in financialtime series forecasting,Omega,29,309–317
Francis E.H. Tay, L.J. Cao(2002),Modified support vector machines in financial time series forecasting,48,847-861
Gestel, T.V., B. Baesens, J. Suykens, M. Espinoza, D.E. Baestaens, J. Vanthienen, and B.D. Moor (2003),Bankruptcy Prediction with Least Squares Support Vector Machine Classifiers,Internationalconference on Computational Intelligence for Financial Engineering,1-8
Haykin, S. (1999),Neural networks: a comprehensive foundation, Englewood CliKs, NJ: Prentice Hall
HUANG, W., Y. NAKAMORI and S.Y.
WANG(2005),Forecasting stock market movement direction with support vector machine,Computers & Operations Research,32, 2513-2522
Huseyin Ince, Theodore B. Trafalis(2006),A Hybrid model for exchange rate prediction,42,1054-1062
Hyun-jung Kim , Kyung-shik Shin(2007),A hybrid approach based on neural networks and genetic algorithms for detecting temporal patterns in stock markets,7,569-576
J. W. Hall, (1994),Adaptive selection of U.S. stock with neural nets, In: GJ Deboeck (Eds.),Trading on the edge: neural, genetic, and fuzzy systems for chaotic financial markets, Wiley,New York
Jian Yang , Zhong Jin, Jing-yu Yang, David Zhang Alejandro F. Frangi(2004),Essence of kernel Fisher discriminant: KPCA plus LDA,Pattern Recognition,37,2097-2100
Kyoung-jae Kim(2003),Financial time series forecasting using support vector machines,Neurocomputing,55,307-319
K.P.Bennett and M.J.Embrechts(2003),An Optimization Perspective on Kernel Partial Least Squares Regression, Computer & Systems Sciences,190,227-250
L. Hoegaerts, J.A.K. Suykens, J. Vandewalle, B. De Moor, KU Leuven(2003),Kernel PLS variants for regression,European Symposium on Artificial Neural Networks Bruges (Belgium),203-208
L. Hoegaerts, J.A.K. Suykens, J. Vandewalle, B. De Moor,Primal Space Sparse Kernel Partial Least
Squares
L.J. Cao,K.S. Chua,W.K. Chong,H.P. Lee and Q.M. Gu(2003),A comparison of PCA, KPCA and ICA
for dimensionality reduction in support vector machine,Neurocomputing,55,321-336
N. Cristianii, C. Campell & J. S. Taylor(1999),
Dynamically adapting kernels in support vector Machines,Advances in Neural Information Processing Systems,1,204-210
ONGSRITRAKUL, P. and N. SOONTHORNPHISAJ(2003),Apply decision tree and support vector regression to predict the gold price, Proceedings of the International Joint Conference on Neural Networks,4,2488-2492
Ping-Feng Pai, Chih-Sheng Lin(2005),A hybrid
ARIMA and support vector machines model in stock price forecasting ,omega,33,497-505
Ping-Feng Pai, Wei-Chiang Hong , Chih-Shen Lin,
Chen-Tung Chen(2006),A Hybrid Support Vector Machine Regression for Exchange Rate Prediction,Information and Management Sciences,17,19-32
Peiling Cui, Junhong Li, Guizeng Wang(2008),
Improved kernel principal component analysis for fault detection,Expert Systems with Applications,34,1210-1219
P. T. Lin(2001), Support vector regression:
systematic design and performance analysis, Unpublished Doctoral Dissertation, Department of Electronic Engineering, National Taiwan University of Science and Technology,
Roman Rosipal and Leonard J. Trejo(2001),Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space,Journal of Machine Learning Research ,2 ,97-123
Roman Rosipal,Kernel Partial Least Squares for Nonlinear Regression and Discrimination
S. Yaser, A. F. Atiya(1996),Introduction to financial Forecasting, Applied Intelligence,6,205-13
Shian-Chang Huang ,Tung-Kuang Wu(2007),Integrating GA-based time-scale feature extractions with SVMs for stock index forecasting,Expert Systems with Applications
S. Rännar, F. Lindgren, P. Geladi, and S. Wold.(1994), A PLS kernel algorithm for data sets with many variables and fewer objects. Part 1: Theory and algorithm. ,Chemometrics and Intelligent Laboratory Systems,8,111–125
Thomason M.(1999),The practitioner methods and tool , Journal of computational Intelligence in Finance,7,36-45
Van, E. and Robert, J.(1997), The application of neural networks in the forecasting of share
Price, Haymarket, VA, USA: Finance & Technology Publishing,
V. N. Vapnik(1995),The nature of statistical learning theory, Springer, New York, USA
V. N. Vapnik, S. Golowich & A. Smola(1997),Support vector method for function approximation,
regression estimation and signal processing,Advantage Neural Information Proceedings System Cambridge, MIT Press, USA,281-287,
Van GESTEL, Tony, et al.(2003),A support vector machine approach to credit scoring, Bank en Financiewezen, 2,Pages 73-82.
Wun-Hwa Chen, Jen-Ying Shih(2006),A study of taiwan’issuer credit rating system using support vector machines,Expert Systems with Applications,30,427-435
Wei Huang,Yoshiteru Nakamori, Shou-Yang Wang,Forecasting stock market movement direction with support vector machine,Computers & Operations Research
Yang, Z.R. (2003),Support vector machines for company failure prediction,International conference on Computational Intelligence for Financial Engineering,47-54
Yong Xu, David Zhang, Fengxi Song, Jing-Yu Yang, Zhong Jing , Miao Li(2007),A method for speeding up feature extraction based on KPCA,Neurocomputing,70,1056-1061
Yong Xu, David Zhang, Fengxi Song, Jing-Yu Yang, Zhong Jing, Miao Li(2007),A method for speeding up feature extraction based on KPCA,Neurocomputing,70, 1056-1061
Zhan-Li Sun, De-Shuang Huang and Yiu-Ming Cheun(2005),Extracting nonlinear features for multispectralimages by FCMC and KPCA,Digital Signal Processing 15, 331-346