(3.239.33.139) 您好!臺灣時間:2021/03/02 16:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許智宇
論文名稱:無失真影像壓縮方法之可回復資訊隱藏技術研究
論文名稱(外文):A Study on Reversible Information Hiding Technique for Lossless Compressed Image
指導教授:蕭如淵蕭如淵引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:53
中文關鍵詞:無失真影像壓縮可回復資訊隱藏資訊隱藏
外文關鍵詞:lossless image compressionreversible information hidinginformation hiding
相關次數:
  • 被引用被引用:0
  • 點閱點閱:147
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
「資訊隱藏」是將機密資訊藏入多媒體數位產物,如影像、圖形、文字、音訊、影片等的一項機制,由於資訊藏入後並不會改變原本多媒體的特性,使得不法者無法察覺到有訊息藏在其中,如此即可達到秘密通訊的目的。由於資訊隱藏的重要性及實用性,使得資訊隱藏成為相當熱門的研究領域,並且有許多有趣的延伸、變形及應用,如在醫學應用上的影像及衛星圖等。
在可回復資訊隱藏技術,是將重要機密資訊從取出後,能夠回復到它原始的狀態。本篇論文我們以Chuang 和Lin 的無失真影像壓縮方法為基礎,開發一個適用於無失真壓縮方法的可回復資訊隱藏方法,此演算法可以成功的將重要資料藏入無失真影像壓縮碼中,當重要資料從壓縮碼中被取出的同時,還能夠回復壓縮影像成原始影像,就我們所知,我們是第一個成功開發適用於無失真壓縮方法的可回復資訊隱藏方法。根據我們的實驗結果,我們所提出的方法在藏量及壓縮效果上都有很好的表現。
Information hiding is a technique that embeds the data in a cover media such as text, image, audio, video, and so on. The characteristic of the media will not be changed after embedding secret data. So the grabbers can't detect the secret data easily. Hence it can achieve the purpose of the secret communication. Because of the importance and practicability with information hiding. Make information hiding become quite hot research field. And there are a lot of interesting extensions and applications, including medical applications, satellite images and so on.
The reversible information hiding techniques remove the embedded data from the setgo-medium such that the setgo-medium can be recovered to its original appearance. In this thesis we develop a reversible data embedding method apply to lossless image compression method based on Chuang and Lin of lossless image compression for foundation. This algorithm can succeeded in hiding the important data into lossless image compressed code success. When important data extracted from compressed code simultaneously. And the compress image can also revert to original image. As we know, we are the first successful development reversible data embedding method apply to lossless image compression method. According to the result of experiment, the method we propose can keep a good quality in embedding capacity and compress result.
目錄
中文摘要.............................................I
Abstract...........................................II
致謝..............................................III
目錄...............................................IV
圖目錄..............................................V
表目錄.............................................VII
第一章 緒論...........................................1
1.1 研究背景與動機..................................1
1.2 研究目的.......................................2
1.3 論文架構.......................................3
第二章 文獻探討.......................................4
2.1 無失真影像壓縮技術介紹...........................4
2.1.1 JPEG 2000[22]...............................4
2.1.2 JPEG-LS[26]................................12
2.1.3 CALIC......................................17
2.1.4 BST ( Base Switching Transformation )....18
2.2 Chuang和Lin之無失真影像壓縮方法.................19
2.2.1 演算法概要................................19
2.2.2 以BS來編碼方塊.............................19
2.2.3 解碼......................................23
2.3 可回復資訊隱藏概念..............................25
第三章 無失真影像壓縮之可回復資料隱藏方法................26
3.1 藏入1 bit 方法.................................26
3.2 取出1 bit 方法.................................34
3.3 藏入多個bit方法................................37
3.4 XOR pattern 設計方式...........................38
第四章 實驗結果與討論..................................42
4.1 實驗方法........................................42
4.2 壓縮效果評估與藏入容量比較........................43
4.3 結果分析與討論..................................47
第五章 結論與未來研究方向..............................49
5.1 結論...........................................49
5.2 未來研究方向....................................49
參考文獻.............................................50
圖目錄
圖1.JPEG-2000 壓縮步驟 4
圖2.影像經過二階之離散小波轉換各頻帶分布情況 5
圖3.位元平面表示圖 7
圖4.方塊大小為8×8在一個位元平面上的掃描次序 7
圖5.Q coder 示意圖 11
圖6.JPEG-LS 方塊圖 12
圖7.梯度判別 13
圖8.JPEG-LS中梯度的量化器 13
圖9.影像預測信號的機率分佈:Laplacian 分佈 14
圖10.CALIC預測函數示意圖 17
圖11.4×4區塊 18
圖12.A (3×3方塊圖) 19
圖13. (A - m之方塊圖) 19
圖14.差值方塊儲存示意圖 21
圖15.Case(1) 3×3方塊 21
圖16.Case(1) 3×3差值方塊 21
圖17.Case(2) 3×3方塊 22
圖18.Case(2) 3×3差值方塊 22
圖19.Case(3) 3×3方塊 22
圖20.Case(3) 3×3方塊圖 23
圖21.方塊還原示意圖 24
圖22. 之P(min,max)示意圖 24
圖23.方塊還原示意圖 24
圖24.方塊圖例1 28
圖25.方塊圖例2 28
圖26.方塊圖例3 29
圖27.方塊像素值圖例1 29
圖28.方塊圖例4 30
圖29.方塊像素值圖例2 30
圖30.Side-match 示意圖 31
圖31.Side-match 預設像素方塊圖例1 31
圖32.方塊圖例4 32
圖33.方塊像素值圖例3 32
圖34.Side-match 預測像素方塊圖例2 32
圖35.方塊像素值圖例4 35
圖36.Side-match 預測像素方塊圖例3 35
圖37.方塊圖例5 36
圖38.方塊圖例6 37
圖39.XOR pattern示意圖 41
圖40.實驗用測試影像 43
圖41.藏量比較圖 46

表目錄
表1.水平方向與垂直方向貢獻表 9
表2.符號的編碼所使用的相鄰標記表 9
表3.數值增量的編碼所使用的相鄰標記表 10
表4.影像之原始大小及壓縮後大小相關數據表 44
表5.影像藏入資料後之壓縮大小、藏量及轉為Case(3)格式相關數據表 45
表6.影像之原始壓縮率及藏入資料後壓縮率 46
[1]W. Bender, D. Gruhl, N. Morimoto, Al Lu,“Techniques for
data hiding,”IBM Systems Journal, Vol. 35, No. (3-4),
pp. 313-316, 1996.
[2]W. Bender, F.J. Paiz, W. Butera, S. Pogreb, D. Gruhl, R.
Hwang, "Applications for data hiding," IBM Systems
Journal, Vol. 39, No. 3-4, pp. 547-568, Jul. 2000.
[3]C.-K. Chan, L.M. Cheng,“Improved hiding data in images
by optimal moderately-significant-bit replacement,”IEE
Electronics Letters, Vol. 37, No. 16, pp. 1017-1018,
Aug. 2001.
[4]C.-K. Chan, L.M. Cheng,“Hiding data in images by simple
lSB substitution,”Pattern Recognition, Vol. 37, No. 3,
pp.469-474, Mar. 2004.
[5]R. M. Gray,“Vector quantization,”IEEE ASSP Magazine,
pp. 4-29, Apr. 1984.
[6]C.T. Hsu, J.L. Wu,“Hidden digital watermarks in
images,”IEEE Transactions on Image Processing, Vol.8,
pp.58-68, Jan. 1999.
[7]C.S. Tsai, C.C. Chang, T.S. Chen, M.H. Chen,“Embedding
robust gray-level watermarks in an image using discrete
cosine transformation,”Distributed Multimedia
Database : Techniques and Applications, pp.206-223, Jan.
2002.
[8]H. Kii, J. Onishi and S. Ozawa,“The digital
watermarking method by using both patchwork and
DCT,”IEEE Multimedia Computing and System, pp. 895-899,
June 1999.
[9]Craizer M., Silva E.A.B.D. and Ramos E.G.,“Convergent
algorithms for successive approximation vector
quantization with applications to wavelet image
compression,”IEE Proceedings-Vision Image and Signal
Processing, Vol. 146, No.3, pp. 159-164,June 1999.
[10]H.J. Wang and C.C.J. Huo,“A multi-threshold wavelet
coder(MTWC) for high fidelity image compression,”in
Proceedings of International Conference on Image
Processing, Vol. 1, pp. 652-655, 1997.
[11]J.M. Zhong, C.H. Leung and Y.Y. Tang,“Wavelet image
coding based on significance extraction using
morphological operation,”in Proceedings of IEE Image
and Signal Processing, Vol. 146, No.4, pp. 206-210,
Aug. 1999.
[12]T.J. Chuang and J.C. Lin, "A new algorithm for lossless
still image compression,"Pattern Recognition, vol.
31, no. 9, pp. 1343-1352, Sep. 1998.
[13]ISO/IEC 15544-1, Information Technology – JPEG2000
Image Coding System–Part 1 : Core Coding System, 2000.
[14]D. Taubman and M. Marcellin, JPEG2000: Image
Compression Fundamentals, Standards, and Practice.
Kluwer, 2001.
[15]ISO/IEC 15444-1, Information technology-JPEG 2000 image
coding system-part 1: Core coding system (2000).
[16]M.J. Weinberger, G. Seroussi, H.-P. Laboratories, P.
Alto, and CA 94304, “The LOCO-I lossless image
compression algorithm: principles and standardization
into JPEG-LS,” IEEE Transactions on Image
Processing, Vol. 9, No. 8, pp. 1309-1324, Aug. 2000.
[17]ISO/IEC 2000a IS 14495, Information Technology-Lossless
and near-lossless compression of continuous-tone still
images.
[18]X. Wu and N. Memon, “Context-based, adaptive,
lossless image coding, ”IEEE Transactions on
Communications, Vol. 45, No. 4, pp. 437–444, Apr. 1997.
[19]X. Wu and N. Memon, “Context-based lossless interband
compression - extending CALIC,” IEEE Transactions on
Image Processing, Vol. 9, No. 6, pp. 994–1001, June
2000.
[20]X. Wu and N. D. Memon, “CALIC-A Context Based Adaptive
Lossless Image Coding Scheme,” IEEE Transactions on
Communications, Vol. 45, pp. 437-444, May 1996.
[21]C.C. Chang, C.P. Hsieh, and J.Y. Hsiao, “A new
approach to lossless image compression,” in
Proceedings of IEEE International Conference on
Communication Technology , Vol. 2, pp. 1734 -1738, Apr.
2003.
[22]周兆龍(民93年5月)。容忍失真性壓縮之資訊隱藏技術。國防大學中正理
工學院電子工程研究所碩士學位論文。
[23]M. Antonini, M.Barlaud, P. Mathieu, and I.
Daubeechies, “Image coding using the wavelet
transform,” IEEE Transactions Image processing, pp.
205-220, Apr. 1992.
[24]G. G. Langdon, “An introduction to arithmetic
coding,” IBM J .Res., De., Vol. 28, No. 2, pp. 135-
149, 1985.
[25]I.H.Witten, R M. Neal, and J. G. Cleary,“Arithmetic
coding for data compression,”Communications of the
ACM, Vol. 3, No. 6, pp. 520-540, June 1987.
[26]柯福生(民95年6月)。以移動估測與JPEG-LS編碼進行無失真醫學影像壓
縮。中原大學電子工程研究所碩士學位論文。
[27]Netravali and J. O. Limb, “Picture coding:A review,”
in Proceedings of the IEEE, Vol.68, pp. 366-406,
Mar.1980.
[28]Daniel P. Huttenlocher, Gregory A. Klanderman, and
William J. Rucklidge,“ Comparing images using the
hausdorff distance,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 15, No. 9, pp.
850-863, Sep. 1993.
[29]T. J. Chuang and J.C. Lin, “On the lossless
compression of still image, ” in Proceedings
of Int. Computer Symposium(ICS’96)-On Image Processing
and Character Reognition, Kaohsiung, Taiwan, Republic
of China, pp. 121-128, 1996.
[30]T. J. Chuang and J.C. Lin, “New approach to image
encryption, ”Journal of Electronic Imaging, Vol. 7,
No. 2, pp. 350-356, April, 1998.
[31]C. W. Honsinger, P. Jones, M. Rabhani, and J. C.
Stoffel, “Lossless recovery of an original image
containing embedded data,” US Patent, No. US6278791,
1999.
[32]Fridrich, J. , Goljan, M. and Du, R.2001), “Invertible
authentication,” in Proceedings of SPIE 2001,
and Watermarking of Multimedia Content, San Jose, CA,
Jan. 2001
[33]Celik, M.U., Sharma, G., Tekalp, A.M., Saber,
E.,“Lossless generalized-lSB data embedding,”IEEE
Transactions on Image Processing, Vol.14, No. 2, pp.
253-226, Feb. 2002.
[34]C.C. Chang, T.C. Lu,“A difference expansion oriented
data hiding scheme for restoring the original host
images,”The Journal of Systems and Software, No. 79,
pp. 1754-1766, Nov. 2006.
[35]J. Tian, “Wavelet-based reversible watermarking for
authentication”, in Proceedings of SPIE Photonics
West, Security and Watermarking of Multimedia Contents,
Vol. 4675-74, pp. 679-690, 2002.
[36]J. Tian, “Reversible data embedding using a difference
expansion, ” IEEE Transactions Circuits Systems for
Video Technology, Vol. 13, No. 8, pp. 890–896, Aug.
2003.
[37]A. M. Alattar,“Reversible watermark using the
difference expansion of a generalized integer
transform,”IEEE Transactions on Image Processing, Vol.
13, No. 8, pp.1147- 1156, Aug. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳希煌(1985),〈台灣城市型農會信用部未來發展方向之研究〉,《基層金融》,15,頁115-174。
2. 林碉力、車鵬程(1995),〈我國基層金融機構合併相關問題之探討〉,《基層金融》,30,頁85-102。
3. 林維義(1999),〈農會信用部經營危機之改革方向探討〉,《存款保險資訊季刊》,13:2,頁1-16。
4. 林享能(2002),〈論農漁會信用部之改革〉,《全國律師》,6:12,頁72-82。
5. 吳榮杰、周百隆(2000),〈農漁會信用部組織與管理之檢討〉,《農業金融論叢》,43,頁1-42。
6. 吳恪元(1995),〈台灣農會信用部析論〉,《信用合作》,46,頁7-20。
7. 王耀興(2006),〈從藍海策略看二次金改〉,《貨幣市場》,10:1, 頁1-7。
8. 丁文郁(2003),〈農業金融法立法意義及其影響〉,《臺灣鄉村研究》,2, 頁133-173。
9. 林御翔(2005),〈臺灣農業金融改革與社會運動──以「一一二三與農共生」運動為例〉,《行政暨政策學報》,40,頁99-136。
10. 陳介英(1996),〈台灣農會信用部的地方特質〉,《基層金融》,32,頁217-239。
11. 蔡宏進(1994),〈臺灣農會組織結構及其功能之演變與啟示〉,《臺灣農業》,30:5,頁18-38。
12. 蔡秋榮(1986),《中、美、日三國農業金融制度之比較研究》。南投: 基層金融研究訓練中心。
13. 蔣憲國、陳麗花、張錦秀(2005),〈基層農會進行廣域型農會合併意願之研究〉, 《農民組織學刊》,7,頁55-89。
14. 廖朝賢(2001),〈2000年台灣地區各級農會營運分析〉,《農訓雜誌》,18:11,頁4-7。
15. 賴英照(2000),〈農會信用部的管理法制應力求健全〉,《華信金融季刊》,13,頁1-11。
 
系統版面圖檔 系統版面圖檔