[1] Agrawal, R. and Srikant, R. (1994). “Fast Algorithms for Mining Association Rules.” Proceedings of the VLDB Conference, pp. 487-499.
[2] Adomavicius, G. and Tuzhilin, T. (2003). “Recommendation Technologies: Survey of Current Methods and Possible Extensions.” Working Paper, Stern School of Business, New York University, New York, United States.
[3] Balabanovic, M. and Shoham, Y. (1997). “Fab: Content-based, Collaborative Recommendation.” Communications of the ACM, Volume 40, No.3, pp. 66-72.
[4] Brin, S. and Page, L. (1998). “The Anatomy of Large-Scale Hypertextual Web Search Engine.” Proceedings of the 7th International World Wide Web Conference, Brisbane, Australia.
[5] Cohen, Jacques (1992). “Special Issue on Information Filtering.” Communication of the ACM, Vol. 35, No. 12
[6] Cutting, D., Karger, D., Pedersen, J. and Tukey, J. (1992). “Scatter / gather: a cluster-based approach to browsing large document collections.” Proceeding of 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 318-329
[7] Chen, M.S., Park, J.S. and Yu, P.S. (1996). “Data Mining for Path Traversal Patterns in a web Environment.” Proceedings of the 16th ICDCS, pp. 385-392.
[8] Cooley, R., Mobasher, B. and Srivastava, J. (1997). “Web Mining: Information and Pattern Discovery on the World Wide Web.” Proceedings of the 9th IEEE International Conference on Tools with Artificial Intelligence (ICTAI’97), pp. 558-567.
[9] Cooley, R., Mobasher, B. and Srivastava, J. (1999). “Data preparation for mining World Wide Web browsing patterns.” Journal of Knowledge and Information Systems, 1(1), pp. 5-32.
[10] Dean, J. and Monika R. H. (1999). “Finding Related Pages in the World Wide Web.” Proceedings of the 8th International World Wide Web Conference, pp. 389–401.
[11] Estivill, C.V. and Lee, I. (2000). “AUTOCLUST: Automatic Clustering via Boundary Extraction for Massive Point Data Sets.” Proceeding of 5th International Conference Geo-Computation, University of Greenwich, Kent, UK. Aug. pp. 23-25
[12] Goffman, William (1971). “A mathematical method for analyzing the growth of a scientific discipline.” Journal of the ACM, 18(2):173{185.
[13] Goldberg, D. et al. (1992). “Using collaborative filtering to weave an information tapestry.” Communications of the ACM, Vol.35, No.12.
[14] Garfield, E. (1995). “New international professional society signals the maturing of sciento-metrics and informetrics.” The Scientist, 9(16).
[15] Herlocker, J., and Konstan, J. (2001). “Content-Independent task-focused recommendation.” IEEE Internet Computing, vol. 5 no 6, pp. 40-47.
[16] James E. Pitkow. (1997) “Characterizing World Wide Web Ecologies.” PhD thesis, Georgia Institue of Technology.
[17] Konstan, J. et al. (1997). “GroupLens: Collaborative Filtering for Usenet News.” Communication of the ACM, Mar., pp. 77-87.
[18] Kleinberg, J. M. (1998). “Authoritative Sources in a Hyperlinked Environment.” Proceedings of the 9th Annual ACM SIAM Symposium on Discrete Algorithms (SODA), pp. 668–677.
[19] Kao, Ben C.M., Lee Joseph K.W., Cheung David W.L., and Ng C.Y. (1998). “Recommending Anchor Points in Structure-Preserving Hypertext Document Retrieval.” Proceedings of the 22nd Annual International Computer Software and Applications Conference, pp. 582–587, IEEE.
[20] Kim, J.G. and Lee, E.S. (1999). “Intelligent Information Recommend System on the Internet.” In Proceedings of 1999 International Workshop on Parallel Processing, pp. 376-380.
[21] Kosala, R. and Blockeel, H. (2000). “Web Mining Research-A Survey.” The 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2(1), pp. 1-15.
[22] Lempel, R. and Moran, S., (2000). “The stochastic approach for link-structure analysis (SALSA) and the TKC effect.” Proceedings of the 9th International World Wide Web Conference.
[23] Marchiori, M., (1997). “The quest for correct information on Web: Hyper search engines.” Proceedings of the 6th International World Wide Web Conference.
[24] Michalski, R.S., Bratko, I., and Kubat, M. (1998). “Machine Learning and Data Mining Methods and Applications,” John Wiley and Sons Ltd, New York.
[25] Michael J. Pazzani (1999). “A Framework for Collaborative, Content-based and Demographic Filtering.” Artifical Intelligence Review, Volume 13, No.5-6, pp.393-408.
[26] Metern, R. v. and Someren, M. v. (2000). “Using Content-Based Filtering for Recommendation”, Proceedings of the ECML/MLNET 2000 Workshop on Machine Learning and the New Information Age, Barcelona, Spain, pp.47-56.
[27] Mobasher, B., Dai, H. Luo, T. Sun, Y. and Zhu, J. (2000). “Integrating Web Usage and Content Mining for More Effective Personalization.” Proceedings of the International Conference on E-Commerce and Web Technologies (ECWeb2000).
[28] Mobasher, B., Cooley, R., and Srivastava, J. (2000). “Automatic Personalization Based on Web Usage Mining.” Communications of the ACM (43:8), pp. 142-151.
[29] Mobasher, B., Dai, H., Luo, T., and Nakagawa, M. (2002). “Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization,” In Data Mining and Knowledge Discovery, Kluwer Publishing, Vol. 6, No. 1, pp. 61-82, January.
[30] Page, L., Brin, S., Motwani, R. and Winograd, T. (1998). “The PageRank Citation Ranking: Bringing Order to the Web.” Technical report, Stanford University, Stanford, CA.
[31] Pirolli, P., Pitkow, J. and Rao, R. (1996). “Silk from a sow's ear: Extracting usable structure from the web.” In Michael J. Tauber, Victoria Bellotti, Robin Je_ries, Jock D. Mackinlay, and Jakob Nielsen, editors, Proceedings of the Conference on Human Factors in Computing Systems : Common Ground, pages 118{125, New York, 13{18 April 1996. ACM Press.
[32] Pazzani, M. and Billsus, D. (1997). “Learning and Revising User Profiles: the Identification of Interesting Web Sites.” Machine Learning, Volume 27, No.3, pp.313-331.
[33] P. Resnick et al., (1994). “GroupLens: An Open Architecture for Collaborative Filtering of Netnews,” Proc. CSCW 94, ACM Press, New York, pp. 175-186.
[34] Resnick, P., and Varian, H. (1997). "Recommender Systems.” Introduction to special section of Communications of the ACM, Vol.40, No.37 , pp. 56-58
[35] Rucker, J. and Polanco, M.J. (1997). “Siteseer: Personalized Navigation for the Web,” Communications of the ACM (40:3), pp. 73-75.
[36] Sougata Mukherjea(1) and James D. Foley. (1995). “Showing the context of nodes in the world wide web.” Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems, volume 2 of Short Papers: Web Browsing, pp. 326
[37] Sougata Mukherjea(2), James D. Foley, and Scott Hudson. (1995). “Visualizing complex hypermedia networks through multiple hierarchical views.” Proceedings of ACM CHI'95 Conference on Human Factors in Computing Systems, volume 1 of Papers: Creating Visualizations, pp. 331
[38] Shardanand, Upendra and Pattie Maes, (1995). “Social Information Filtering: Algorithmsfor Automating ‘Word of Mouth.’” Proc. CHI 95, ACM Press, New York, pp. 210-217.
[39] Spertus, Ellen (1997). “Parasite: Mining structural information on the web.” Proceedings of the 6th International WWW Conference.
[40] Terveen, L., Hill, W., Amento, B., McDonald, D. and Creter, J. (1997). “PHOAKS: A System for Sharing Recommendations.” Communications of the ACM (40:3), pp. 59-62.
[41] Weiss, R., Velez, B., Sheldon, Mark A., Manprempre, C., Szilagyi, P., Duda, A. and David K. Gifford. (1996). “HyPursuit: A hierarchical network search engine that exploits content-link hypertext clustering.” Proceedings of the 7th ACM Conference on Hypertext, pages 180{193, New York, 16{20 March 1996. ACM Press.
[42] Yu, P.S. (1999). “Data Mining and Personalization Technologies.” In Proceedings of the 6th International Conference on Database System for Advanced Applications, pp. 6-13.
[43] 李維平,李政權,黃仁傑,黃寶嘉,(2000),「使用資料探勘技術產生個人化廣告之研究」,第二屆網站經營學術暨實務研討會論文集,101-110 頁,十二月。
[44] 馮文正,(2000),「合作式網站推薦系統」,國立交通大學資訊科學研究所碩士論文。[45] 廖婉菁,(2002),「應用協同過濾機制於商品推薦之研究-以手機網站為例」,中原大學資訊管理學系。[46] Hope, N. Tillman. “Evaluating quality on the net.”,http://www.hopetillman.com/findqual.html。
[47] CKIP中文詞知識庫小組,godel.iis.sinica.edu.tw/CKIP/index.htm