(34.201.11.222) 您好!臺灣時間:2021/02/25 13:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳晶琳
論文名稱:減量訓練對體內抗氧化能力與肌肉損傷改變之研究
論文名稱(外文):Changes in oxidative stress and antioxidant capacity during tapering training
指導教授:曾文培曾文培引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:運動健康研究所
學門:民生學門
學類:運動休閒及休閒管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:86
中文關鍵詞:阻力訓練氧化壓力肌肉損傷抗氧化能力減量訓練坐式型態規律運動
外文關鍵詞:resistance trainingoxidative stressmuscle damageantioxidant capacitytapering trainingsedentaryregular exercise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
I:第一部份
減量訓練對體內氧化壓力生成和抗氧化能力改變之研究
摘要
目的:本研究模擬賽前減量訓練對體內產生氧化壓力及抗氧化能力改變之影響。方法:研究對象為18位坐式型態之健康男性,分成控制組及減量組,接受美國運動醫學會建議之負荷強度,以80% 一次動作最大負荷量 (repetition of maximum, 1RM) 進行8項阻力訓練,每週3次,共維持12週,控制組在第8週後停止訓練,減量組在第8週後減量為每週1次訓練。分別在訓練前第0週 (0W) 與運動後第8週 (8W)、10週 (10W)、12週 (12W) 採集血液進行分析。結果:(一)控制組:乳酸脫氫酶 (lactate dehydrogenase, LDH) 活性在8W和10W顯著增加、一氧化氮 (nitric oxide, NO) 濃度在8W顯著增加、尿酸 (uric acid, UA) 濃度在12W顯著降低、總抗氧化能力 (total antioxidant capacity, TAC) 活性8、10及12W分別顯著增加、過氧化氫酶 (catalase activity, CAT) 活性10W顯著增加(p<.05)。(二)減量組:肌酸激酶 (creatine kinase, CK) 活性在8W顯著增加、LDH活性在8、10及12W分別顯著增加、UA濃度在10W顯著增加、NO濃度在8W顯著增加、TAC活性在10和12W分別顯著增加、CAT活性在10和12W顯著增加 (p<.05)。血漿丙二醛 (malondiadehyde, MDA)、羰基蛋白質 (protein carbonyls, PC) 及超氧化物歧化酶 (superoxide dismutase, SOD) 在0W-12W並無顯著變化。另外,兩組肌力於訓練後10W和12W皆較訓練前增加(p<.05)。結論:減量訓練較停止訓練會增加肌肉損傷與體內氧化壓力,而兩組均能提昇體內抗氧化酵素防禦能力。停止訓練提升肌力又不提高氧化損傷,因此選擇停止訓練方式訓練即可達預期效果。

II:第二部份
八週阻力訓練對坐式型態與規律運動學生之自由基生成差異
摘要
目的:本研究主要比較長期阻力訓練對不同運動型態學生體內產生氧化壓力和抗氧化能力改變之差異。方法:研究對象為17位健康男性,分成坐式型態組及規律運動組,以80% 一次動作最大負荷量 (repetition of maximum, 1RM) 進行8週阻力訓練。分別在訓練前與訓練後立即0、7、24、48、72小時 (h) 採集血液進行分析。結果:(一)坐式型態組:乳酸脫氫酶 (lactate dehydrogenase, LDH) 活性在48及72h顯著增加;一氧化氮 (nitric oxide, NO) 濃度在0-24h顯著增加;丙二醛 (malondiadehyde, MDA) 濃度在72h顯著增加、羰基蛋白質 (protein carbonyls, PC) 濃度在24h顯著增加;超氧化物歧化酶 (superoxide dismutase, SOD) 活性於0h顯著增加;麩胱甘肽總量 (total glutathione, TGSH) 濃度在0、7、72h顯著增加;總抗氧化能力 (total antioxidant capacity, TAC) 在0-24h顯著增加,在48-72h顯著降低;過氧化氫酶活性 (catalase activity, CAT) 在24-48h顯著降低(p<.05);肌酸激酶 (creatine kinase, CK) 活性、尿酸 (uric acid, UA) 濃度在訓練前至後72h間並無顯著變化。(二)規律運動組:CK活性在7h顯著增加;UA濃度在0h顯著減少;PC濃度在24h顯著增加;SOD活性於0h顯著增加;TAC在0-24h顯著增加,在48-72h顯著降低(p<.05);LDH活性、NO、MDA、TGSH濃度、CAT活性在訓練前至後72h間並無顯著變化。此外,兩組肌力於訓練8週後皆較訓練前增加(p<.05),而以坐式型態組增加較多。結論:八週阻力訓練會增加兩組肌肉損傷與體內氧化壓力,但是以坐式型態組比規律運動組產生較高氧化壓力。長期阻力訓練也相對提昇兩組體內抗氧化能力,但以坐式型態組增加較多。綜上可知規律運動組從事阻力訓練不僅能提升肌力,且氧化性傷害比坐式型態組少。
Part I :
Changes in oxidative stress and antioxidant capacity during tapering training .
Abstract
Purpose: The aim of this study is exploring the changes in oxidative stress and antioxidant capacity during tapering training before match. Methods: Eighteen sedentary males were recruited and divided into control and tapering group. The subjects performed resistance training at 80% of one repetition of maximum (1RM).After completed training for 8 weeks, the control group stop training and the tapering group keep training once a week for another four weeks. The blood samples were obtained before training (0W) and after training for 8, 10, 12 weeks. Results: (1) Control group: The lactate dehydrogenate (LDH) activity were increased after 8W and 10W;nitric oxide (NO) level was increased after 8W;uric acide (UA) concentration was decreased after 12W;total antioxidant capacity (TAC) were increased after 8W, 10W and 12W;catalase activity (CAT) was increased after 10W (p<.05). (2) tapering group: creatine kinase (CK) activity was increased after 8W;LDH activity were increased after 8W, 10W and 12W;UA concentration was increased after 10W;NO level was increased after 8W;TAC were increased after 10W and 12W;CAT activity were increased after 10W and 12W(p<.05). Plasma malondiadehyde (MDA), protein carbonyls (PC) and superoxide dismutase (SOD) have no significant change during 0W-12W. Besides, the muscle strength after training in 10W and 12W were increased for two groups. Conclusion: Tapering training increased more oxidative stress and muscle damage than stop training. Both groups can increase antioxidant capacity. Stop training increases muscle strength but no oxidative damage. It is ideal training model before match for athletes.

Part II :
Comparisons of the effects of free radical production for sedentary and regular exercise students after 8-weeks resistance training.
Abstract
Purpose: The aim of this study were compared the effect of 8-weeks resistance training on oxidative stress and antioxidant capacity between student with different exercise habits.
Methods: Seventeen males were recruited and divided into sedentary group and regular exercise group. The subjects performed resistance training at 80% of one repetition of maximum (1RM) for 8 weeks. The blood samples were obtained before training and after training immediately, 7, 24, 48 and 72 hours. Results: (1) Sedentary group: The lactate dehydrogenate (LDH) activity were increased after 48 and 72h;nitric oxide (NO) level were increased after 0-24h;malondiadehyde (MDA) concentration was increased after 72h;protein carbonyls (PC) concentration was increased after 24h;superoxide dismutase (SOD) activity was increased after 0h;total glutathione (TGSH) concentration were increased after 0, 7, and 72h;total antioxidant capacity (TAC) were increased after 0-24h but 48-72h were decreased;catalase activity (CAT) were decreased after 24-48h (p<.05);creatine kinase (CK) and uric acid (UA) have no significant change. (2) regular exercise group: CK activity was increased after 7h;UA was decreased after 0h;PC concentration was increased after 24h;SOD activity was increased after 0h;TAC were increased after 0-24h but decreased after 48-72h (p<.05);LDH, NO, MDA, TGSH and CAT have no significant change. Besides, the muscle strength after 8W training was increased for both groups. Regular exercise group increased more. Conclusion: The 8 weeks resistance training increased muscles damage and oxidative stress for both groups. Sedentary group produced oxidative stress was much than regular exercise group. The long-term resistance training was also increased antioxidant capacity, but it increases more for sedentary group. Therefore, regular exercise group couldn’t only increased muscle strength but also less oxidative damage.
縮寫表 iv
中文摘要 vii
英文摘要 xi

第壹章 緒論 1
第一節 問題背景 1
第二節 研究目的 3
第三節 研究問題 4
第四節 研究假設 5
第五節 研究範圍與限制 5
第六節 名詞解釋 6

第貳章 文獻探討 8
第一節 何謂無氧阻力運動 8
第二節 自由基的來源 9
第三節 運動氧化壓力與自由基生成 11
第四節 自由基清除系統 12
第五節 運動與氧化壓力傷害 14
第六節 缺血再灌流模式造成自由基之影響 16 

第參章 材料與方法 19
第一節 研究對象 19
第二節 研究流程與步驟 19
第三節 實驗材料 22
第四節 實驗方法 23
第五節 統計分析 35

第肆章 結果與討論 36
第一部份
第一節 受試者基本資料與自覺量表 36
第二節 結果 36
第三節 討論 38
第二部份
第一節 受試者基本資料與自覺量表 42
第二節 結果 42
第三節 討論 45

第伍章 結論與建議 49
第一節 結論 49
第二節 建議 50
引用文獻 51
圖表 61
附錄 85
中文部分
方進隆(1990)。長跑訓練和運動強度對青年男子血清尿酸之影響。體育學報,20,115-143。
林正常(1986)。運動科學與訓練。台北:銀禾。
林正常(2001)。阻抗運動對肌酸激酶及丙二醛的影響。體育學報,31,35-46。
張永朋(2007)。重量訓練對於基本運動能力效果之相關研究。國立台灣體育學報,20,31-47。
翁慶章、鍾伯光(2002)。高原訓練的理論與實踐。北京:人民。
詹美華(2005)。老年人肌力衰退之機轉與再強化之要訣。物理治療,30(6),285-292。
郭堉圻(1999)。不同強度的阻力運動對脂質過氧化物的影響。國立台灣師範大學未出版碩士論文。
Thomas, R. B., & Roger, W. E. (2004). 肌力與體能訓練(蔡崇濱、林信甫、林政東、吳柏翰、鄭景峰、傅正思、戴堯種)。台北市:藝軒(原著於2003年出版)。

英文部分
Alamdari, D. H., Kostidou, E., Paletas, K., Sarigianni, M., Konstas G.P., A., Karapiperidou, A., & Koliakos, G. (2005). High sensitivity enzyme-linked immunosorbent assay (ELISA) method for measuring protein carbonyl in samples with low amounts of protein. Free Radical Biology & Medicine, 39, 1362-1367.
Alessio, H. M. (1993) . Exercise-induced oxidative stress. Medicine and Science in Sports and Exercise, 25, 218-224.
Alessio, H. M., Hagerman, A. E., Fulkerson, B. K., Ambrose, J., Rice, R. E., & Wiley, R. L. (2000). Generation of reactive oxygen species after exhaustive aerobic and isometric exercise. Medicine and Science in Sports and Exercise, 32, 1576-1581.
American College of Sports Medicine (2002).Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 34(2), 364-380.
American College of Sports Medicine (1998). ACSM position stand-The recommendation quantity and quality of exercise for developing and maintaing cardiorespiratory and muscular fitness, and flexibility in healthy adults. Medicine and Science in Sports and Exercise, 30(6), 975-991.
Auer, D. E. (1989). An hypothesis on the etio-pathogenesis of equine inflammatory joint disease. Veterinary clinical pathology, 18(1), 21-26.
American College of Sports Medicine (2002).Progression models in resistance training for healthy adults. Medicine and Science in Sports and Exercise, 34(2), 364-380.
Bast, A., Haenen, G. R., & Doelman, C. J. (1991). Oxidants and antioxidants:state of the art. American Journal of Medical Genetics 91, 2-13.
Banerjee, A. K., Mandal, A., Chanda, D., & Chakraborti, S. (2003). Oxidant, antioxidant and physical exercise. Molecular and Cellular Biochemistry, 253, 307-312.
Bertil, S., Ylva, H. W., & Fred, S. A. (1990). Biochemical mechanisms for oxygen free radical formation during exercise. Sports Medicine, 10(4), 236-252.
Bloomer, R. J. (2005). Energy cost of moderate-duration resistance and aerobic exercise . Journal of strength and conditioning research, 19(4), 878-882.
Bloomer, R. J., & Goldfarb, A. H. (2004). Anaerobic exercise and oxidative stress: a review. Canadian journal of applied physiology, 29(3), 245-263.
Bloomer, R. J., Falvo, M. J., Fry, A. C., Schilling, B. K., Smith, W. A., & Moore, C. A. (2006). Oxidative stress response in trained men following repeated squats or sprints. Medicine and Science in Sports and Exercise, 38(8), 1436-1442.
Bloomer, R. J., Goldfarb, A. H., Wideman, L., McKenzie, M. J., & Consitt, L. A. (2005). Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. Journal of Strength and Conditioning Research, 19(2), 276-285.
Bredt, D. S., & Snyder, S. H. (1994). Nitric oxide: A physiologic messenger molecule. Annual Review of Biochemistry, 63, 175-195.
Bryer, S., & Goldfarb, A. H. (2001). The effect of vitamin C supplementation on blood glutathione status, DOMS, and creatine kinase. Medicine and Science in Sports and Exercise, 33, S122.
Chevion, S., Moran, D. S., Heled, Y., Shani, Y., Regev, G., Abbou, B., Berenshtein, E., Stadtman, E. R., & Epstein, Y. (2003). Plasma antioxidant status and cell injury after severe physical exercise. Proceedings of the National Academy of Science, 100, 5119-5123.
Child, R., Brown, S., Day, S., Donnelly, A., Roper, H., & Saxton, J. (1999). Changes in indices of antioxidant status, lipid peroxidation and inflammation in human skeletal muscle after eccentric muscle actions. Clinical Science, 96, 105-115.
Childs, A., Jacobs, C., Kaninski, T., Halliwell, B., & Leeuwenburgh, C. (2001). Supp-Lamentation with vitamin C and N-acetyl-cysteine increase oxidative stress in humans after an acute muscle injury induced by eccentric exercise. Free Radical Biology and Medicine, 31(6), 745-753.
Clarkson, P. M., & Tremblay, I. (1988). Exercise-induced muscle damage, repair, and adaptation in humans. Journal of applied physiology, 65(1), 1-6.
Chung, S. C. (1997). Estrogenic effects on exercise-induced oxidative stress Unpublished dissertation, University of North Carolina at Greensboro.
Chang, W. Y., Liu, J. F., Tsai, W. Y., Jan, Q. H., & Hsu, M. C. (2000). The effects of exercise training on cell training on cell injury and antioxidative status of female weightlifters. The 2nd international congress of sports nutrition (ICSN 2000),(p. 88). Taipei Medical College, Taipei, Taiwan, R. O. C.
Deiss, A., Lee, G. R., & Gartwright, G. E. (1970). Hemolytic anemia in Wilson's disease. Annals of Internal Medicine, 73(3), 413-418.
Duthie, G. G., Robertson, J. D., Maughan, R. J., & Morrice, P.C. (1990). Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Archives of Biochemistry and biophysics, 282(1),78-83.
Dousset, E., Steinberg, J. G., Faucher, M., & Jammes, Y. (2002). Acute hypoxemia does not increase the oxidative stress in resting and contracting muscle in humans. Free radical research. 36(6), 701-704.
Dixon, C. B., Robertson, R. J., Goss, F. L., Timmer, J. M., Nagle, S. F., & Evans, R. W. (2006). The effect of acute resistance exercise on serum malondialdehyde in resistance-trained and untrained collegiate men. Journal of strength and conditioning research, 20(3), 693-698.
Ernster, VL. (1986). Women, smoking, cigarette advertising and cancer. Women and Health. 11(3-4), 217-235.
Ebbeling, C. B., & Clarkson, P. M. (1989). Exercise induced muscle damage and adaptation. Sports Medicine, 7(4), 207-234.
Fielding, R. A., & Meydani, M. (1997). Exercise, free radical generation, and aging. Clinical and Experimental Allergy Reviews, 9, 12-18.
Friden, J., & Lieber, R. L. (2001). Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fibre components. Acta Physiologica Scandinavica, 171, 321-326.
Fatouros, I. G., Destouni, A., Margonis, K., Jamurtas, A. Z., Vrettou, C. Kouretas, D., Mastorakos, G., Mitrakou, A., Taxildaris, K., kanavakis, E., & Papassotiriou, I. (2006). Cell-free plasma DNA as a novel marker of aseptic inflammation severity related to exercise overtraining. Clinical Chemistry, 52, 1820-1825.
Groussard, C., Morel, I., Chevanne, M., Monnier, M., Cillard, J., & Delamarche, A. (2000). Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. Journal of applied physiology, 89(1), 169-175.
Halliwell, B. (1996). Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radical Research, 25(1), 57-74.
Halliwell, B., & Gutteridge, J. M. (1989). Iron toxicity and oxygen radicals. Bailleres Clinical Haematology, 2(2), 195-256.
Hancock, J. T. (1997). Superoxide, hydrogen peroxide and nitric oxide as signaling molecules: their production and role in- disease. British Journal of Biomedical Science, 54(1), 38-46.
Hellsten , Y . (2000). The role of xanthine oxidase in exercise. In, C .K. Sen , L . Parker , and O. Hanninen ( Eds.) , Handbook of oxidants and Antioxidants in Exercise, 153-176. Amsterdarm , Elsevier Science .
Hellste-Westing, Y., Balsom, P. D., Norman, B. & Sjodin, B. (1993). The effect of high-intensity training on purine metabolism in man. Acta Physiol. Scnad, 149, 405-412.
Hellsten, Y., Frandsen, U., Orthenblad, N., Sjodin, B., & Richter, E. A. (1997). Xanthine oxidase in human skeletal muscle following eccentric exercise: A role of inflammation. The journal of physiology, 498(1), 239-248.
Jackson, M. J. (2000). Exercise and oxygen radical production by muscle. In: C. K. Sen, L. Packer, and O.henninen (Eds.), Handbook of Oxidants and Antioxidant in Exercise, 57-68. Amsterdam: Elsevier Science.
Krieg, M., Gunsser, K. J., Steinhagen-Thiessen, E., Becker, H. (1986). Comparative quantitative clinico-chemical analysis of the characteristics of 24-hour urine and morning urine. Journal of Clinical Chemistry and Clinical Biochemistry, 24, 863-869.
Lee, J., & Clarkson, P. M. (2003). Plasma creatine kinase activity and glutathione after eccentric exercise. Medicine and Science in Sports and Exercise, 34, 443-448.
Lee, J., Goldfard, A. H., Rescion, M. H., Hegde, S., Patrick, S., & Apperson, K. (2002). Eccentric exercise effect on blood oxidative-stress markers and delayed onset of muscle soreness. Medicine and Science in Sports and Exercise, 34, 443-448.
Lenn, J., Uhl, T., Mattocola, C., Boissonneault, G., Yates, J., ibrahim, W., & Bruckner, G. (2002). The effects of fish oil and isoflavones on dealayed onset muscle soreness. Medicine and Science in Sports and Exercise, 34, 1605-1613.
Marzatico, F., Pansarasa, O., Bertorelli, L., Somenzini, L., & Valle, G. D. (1997). Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. The Journal of Sport Medicine And Physical Fitness, 37(4), 235-239.
Maxwell, S. R. J. (1995). Prospects for the use of antioxidant therapies. Drugs, 49, 345-361.
Mcbride, J. M., Kraemer, W. J., Triplett-Mcbride, T., & Sebastianelli, W. (1997). Effect of resistance exercise on free radical production. Medicine and Science in Sports and Exercise, 30(1), 67-72.
McBride, J. M., Kraemer, W. J., Triplett-McBride, T., & Sebastianelli, W. (1998). Effect of resistance exercise on free radical production. Medicine and Science in Sports and Exercise, 30, 67-72.
McCord, J. M. (1985). Oxygen-derived free radicals in post ischemic tissue injury. The New England Journal of Medicine, 312, 159-163.
Margonis, K., Fatouros, I., Jamurtas, A. Z., Nikolaidis, M. G., Douroudos, I., Chatzinikolaou, A., Mitrakou, A., Mastorakos, G., Papassotiriou, I., Taxildaris, K., & Kouretas, D. (2007). Oxidative stress biomarkers responses to physical overtraining: Implications for diagnosis. Free Radical Biology and Medicine, 43, 901-910.
Packer, L. (1997). Oxidants, antioxidant nutrients and athletes. Journal of Sports Science, 15, 353-363.
Powers, S. K., Ji, L.L., & Leeuwenurgh, C. (1999). Exercise training-induced alterations in skeletal muscle antioxidant capacity: a brief review. Medicine and Science in Sports and Exercise, 31, 987-997.
Parise, G., Brose, A. N., & Tarnopolsky, M. A. (2005). Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Experimental Gerontology, 40, 173-180.
Parise, G., Phillips, S. M., Kaczor, J, J., & Tarnopolsky, M. A. (2005). Antioxidant enzyme activity is up-regulated after unilateral Resistance exercise training in older adults. Free Radical Biology and Medicine, 39, 289-295.
Radak, Z., Pucsok, J., Mecseki, S., Csont, T., & Ferdinandy, P. (1999). Muscle sornessinduced reduction in force generation is accompanied by increased nitric oxide content and DNA damage in human skeletal muscle. Free radical biology and medicine, 26, 1059-1063.
Stone, M. H. (1982). Considerations in gaining a strength-powetrining effect. National Strength and Conditioning Association Journal, 15(3), 7-15.
Sahlin, k., Cizinsky, S., Warholm, M., and Hoberg, J. (1992). Repetitive static muscle contraction in humans-A trigger of metabolic and oxidative stress? Europeam journal of applied physiology, 64, 228-236.
Saxton, J. M., Donnelly, A. E., & Roper, H. P. (1994). Indices of free-radical-mediated damage following maximal voluntary eccentric and concentric muscular work. Europeam journal of applied physiology, 68, 189-193.
Sen, C. K., Rankinen, T., Vaisanen, S., & Rauramaa, R. (1994). Oxidative stress after human exercise: Effect of N-acetycysteine supplementation. Journal of Applied Physiology, 76(6), 2570-2577.
Steinberg, J., Gainnier, M., Fabrice, M., Faucher, M., Armaud, C., & Jammes, Y. (2002). The post-exercise oxidative stress is depressed by acetylsalicylic acid. Respiratory physiology and neurobiology, 130, 189-199.
Surmen-Gur, E., Gur, E., Ozturk, E., Gur, H., Punduk, Z., & Tuncel, P. (1999). Effect of vitamin E supplementation on post-exercise plasma lipid peroxidation and blood antioxidant status in smokers:With special reference to haemoconcen tration effect. European journal of applied physiology and occupational physiology. 79(6), 472-478.
Szasz, G., Gruber, W., & Bernt, E. (1976).Creatine kinase in serum: 1. Determination of optimum reaction conditions. Clinical Chemistry, 22(5), 650-656.
Seiji, M., Takashi, M., Tetsuji, K., Jun, S., Motoyuki, I., Yoko, I. T., Haruka, M., Yoshito, K., Shinya, K., & Mitsuo, M. (2001). Effects of exercise training of 8 weeks and detraining on plasma levels of endothelium-deeived factors, endothelin-1 and nitric oxide, in healthy young humans. Life Sciences, 69, 1005-1016.
Tiidus, P. M., & Houston, M. E. (1995). Vitamin E status and response training. Sports Medicine, 20(1), 12-23.
Tiidus, P. M. (1998). Radical species in inflammation and over-training. Canadian Journal of Physiology and Pharmacology, 76, 533–538.
Urso, M. L., & Clarkson, P. M. (2003). Oxidative stress, exercise, and antioxidant supplementation. Toxicology, 189, 41-54.
Yu, B. (1994). Cellular defenses against damage from reactive oxygen species. Physiological Reviews, 74, 139-162.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔