(3.238.36.32) 您好!臺灣時間:2021/02/27 09:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳育斌
研究生(外文):Chen, Yu-Pin
論文名稱:高密度印刷電路板CO2雷射鑽孔機研發與應用
論文名稱(外文):Applications and Development for CO2 Laser Drilling Machine of High-Density Interconnection Printed Circuit Boards
指導教授:陳明飛陳明飛引用關係
指導教授(外文):Chen, Ming-Fei
學位類別:博士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:106
中文關鍵詞:高密度連結印刷電路板微通道加工雷射微通道加工CO2雷射鑽孔機振鏡式掃瞄技術領域畸變誤差定位誤差二維補償技術誤差補償ITO電極圖案雷射直接加工
外文關鍵詞:High-density interconnectedPrinted circuit boardsMicrovias formationLaserviaCO2 laser drilling machineGalvanometric scanning technologyField distortion errorpositioning errortwo-dimensional compensation methoderror compensationITO laser direct circuit patterning
相關次數:
  • 被引用被引用:5
  • 點閱點閱:3613
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:367
  • 收藏至我的研究室書目清單書目收藏:1
近年來,由於電子產業朝向輕薄短小與多功電子商品發展,電子電路設計工程師發展高密度印刷電路板(HDI PCBs)技術。電路板設計從傳統通孔轉變成具有通道與盲孔的高密度多層電路板結構,這技術將可增加電路板上的電路密度與元件數目。UV雷射與CO2雷射已廣泛使用在高密度印刷電路板微通道製程上。由於CO2雷射鑽孔機加工速度比UV雷射鑽孔機快,印刷電路板產業多數採用CO2雷射鑽孔機。因此,本研究主要發展CO2雷射鑽孔機與探討其關鍵技術,包含機械系統、光學系統、PC-Base控制器、CAD/CAM解譯技術與補償技術等。
高精密進給系統定位精度補償技術是雷射鑽孔機中相當重要的技術。本研究主要也探討CO2雷射鑽孔機XY進給系統二維誤差補償技術,利用雷射鑽孔機上CCD影像處理系統量測標準試片標記座標,藉由標記座標誤差獲得XY進給系統定位誤差。藉由所量測XY進給系統定位誤差求得二維誤差補償函數,此函數將可修正進給系統定位誤差。藉由HP5519A雷射干涉儀量測XY進給系統補償後定位精度,證明本研究將有效增加XY進給系統定位精度。根據量測結果,X軸定位精度將由7um提升到2.8um,Y軸由17um提升到2.6um。並且,此方法將不會影響XY進給系統之垂直度精度與重複精度。
CO2雷射鑽孔機使用振鏡式掃瞄系統,可有效提升雷射鑽孔製程速度,並且大多數雷射加工系統已經廣泛運用掃瞄頭增加加工效率。但是,振鏡式雷射掃瞄系統通常在掃瞄區域中產生領域畸變誤差,對此需發展一套誤差補償技術在控制系統之中,修正掃瞄系統畸變誤差。因此,本研究探討雷射鑽孔機中掃瞄系統畸變誤差問題,並發展補償技術校正畸變誤差。一般而言,振鏡式掃瞄系統領域畸變誤差為隨機誤差,這不規則的誤差形式將可藉由預補償技術修正。本研究提供一種Lagrange多項式預補償技術,修正振鏡式掃瞄系統控制指令與角度,藉此校正掃瞄系統之畸變誤差。實驗結果表示本研究將有效校正掃瞄系統畸變誤差,並且可以增加雷射鑽孔機系統之鑽孔定位精度,鑽孔精度可從原先的±0.3mm提升到±0.05mm。
雖然Lagrange多項式能有效降低掃瞄系統誤差,但不連續的影像將會產生在雷射打標照片上。因此,本論文發展一個新方法降低掃瞄系統畸變誤差,主要是利用二維曲線擬合求得校正後的振鏡式掃瞄器控制指令,修正掃瞄系統誤差。藉由結果證明本方法將可有效降低雷射打標系統畸變誤差。
最後,本研究利用所發展之雷射鑽孔機完成高密度電路板微通道加工,利用開銅窗製程技術加工高密度電路板微通道,並使用光束修整技術提升雷射鑽孔品質。本研究也完成蛋殼雷射日期打印與ITO電極圖案雷射直接加工技術之研究。除了雷射加工應用外,本研究發展一套DSP雷射打標系統,相關技術在本研究中發展與探討,包含點矩陣打標、陣列式打標與圖像擴散誤差打標技術等。
The current trend in the microelectronics industry is towards smaller, lighter and more powerful electronic products, and electronic circuit designers are designing high-density interconnected printed circuit boards (HDI PCBs). The board design, transformed from the conventional through hole to the sequence stacking then to blind buried via structure– called HDI technology, which can highly increase the routing density and components assembly density. Laser drilling machines, including CO2 laser drilling machine and UV laser drilling machine, have been widely adopted in forming the microvias of high-density interconnected printed circuit boards. Due to the work efficiency of CO2 laser drilling machine is higher than UV laser drilling machine, CO2 laser drilling machines are main equipment of choice for the microvias formation in the PCB industries. Accordingly, the CO2 laser drilling machine is developed and discussed in this study. In order to develop the CO2 laser drilling machine, several techniques should be developed, including the mechanical structure, the optical system, the PC-base controller, the CAD/CAM interpretation and the compensation methods, and they are discussed in this study.
The high positioning accuracy of feeding system is one of the heavy components in precision machine systems, and its compensation method for the positioning accuracy is also an important technique in machine systems. The investigation develops a compensation method of positioning accuracy for two-dimensional feeding system, which using the two-dimensional Lagrange polynomial amend the positioning error of feeding system. First, positioning errors of XY tables are measured by a CCD image processing system by using a standard specimen. Then the two-dimensional compensation function can be determined by the two-dimensional positioning errors curve of the XY feeding system – the system is responsible for correcting the positioning error of the XY table. The positioning accuracy of the amended XY feeding system is measured by a HP 5519A Interferometer, and is verified can effectively increase the accuracy of XY table. According to the experimental results, the positioning accuracy of the X-axis of the XY feeding system has decreased from 7 microns to 2.8 microns and that of the Y-axis is from 17 microns to 2.6 microns. Furthermore, the compensation method does not affect the perpendicular accuracy and the repeatability accuracy of XY feeding systems.
The CO2 laser drilling machine utilizes a galvanometric scanning system that can effectively increase the speed of laser drilling procedure, and most of the laser materials processing systems have used the scanning systems improving the efficiency of processing. However, laser galvanometric scanning systems are usually associated with a field distortion error. Accordingly, techniques must be developed to compensate for distortion error. Hence, the investigation discusses the field distortion error of a laser scanning system based on a CO2 laser drilling machine and a method for the correcting this distortion error. The field distortion error is a random error in the laser galvanometric scanning system. This irregular error is usually corrected using pre-compensation methods that apply an error function. The study gives a pre-compensation technique to correct the distortion error of scanning image, which using the two-dimensional Lagrange polynomials modified the control commands of the galvanometric scanning system. The results in this study indicate that the compensation method effectively amended the field distortion and increased the accuracy of the positioning of the holes that were drilled using a laser galvanometric scanning drilling machine. The positioning errors of drilling holes have reduced from ±0.3mm to ±0.05 mm after error compensation.
Although Lagrange polynomial can effectively reduce the errors of the scanning system, the non-continuous result of scanning image would be occurred in the marking pictures. Hence, the dissertation develops a new method to decrease the field distortion of the laser marking image, which using the surface curve fitting method to obtain the function of the correction control commands of the galvos. The experimental results indicate that the method can effectively amend the field distortion of laser marking system.
Finally, the result of microvias of HDI PCBs that uses the CO2 laser drilling machine is also presented in this study. The conformal mask drilling for microvias formation is presented, and these microvias are formed by a shaped laser beam to improve the quality of microvias. The technology of laser coding on the eggshell and the laser direct write patterning technique of ITO film are presented in this dissertation. Furthermore, the study has developed a laser marking system that uses the DSP controller. The technology of laser marking system is presented in this study, including the dot marking, the vector marking and the error diffusion techniques for the picture marking.
Contents I
Abstract V
摘要 VII
Table caption IX
Figure caption X
Notations XIV
Notations XIV

Chapter 1 Introduction 1
1.1 Backgrounds 1
1.2 Introduction to laser processing 3
1.3 HDI printed circuit boards 7
1.4 Literature review 8
1.4.1 Microvias formation using laser drilling processing 8
1.4.2 Development of CO2 laser drilling machine 9
1.4.3 Compensation technology for laser drilling machine 10
1.5 Structure of the dissertation 11
1.6 Laser safety 12

Chapter 2 CO2 laser drilling machine 15
2.1 Introduction to laser physics 15
2.1.1 What lasers? 15
2.1.2 CO2 lasers 15
2.2 Fundamental on laser drilling processing 19
2.2.1 Percussion drilling method 20
2.2.2 Trepanning irradiation method 21
2.3 Development of CO2 laser drilling machine 21
2.3.1 General description of the CO2 laser drilling machine 21
2.3.2 Galvanometric scanning system and f-theta lens 25
2.3.3 Analysis of f-theta scanning lens 28
2.3.4 Optical system and beam shaper 32
2.3.5 Control system and NC translation 34
2.4 The feature of CO2 laser drilling stations 37

Chapter 3 Compensation technology for the CO2 laser drilling machine 39
3.1 Introduction to compensation techniques 39
3.1.1 Compensation methods using Lagrangian interpolation 39
3.1.2 Compensation methods using surface curve fitting 41
3.2 Compensation technique for the feeding system of CO2 laser drilling machine 43
3.2.1 Two-dimensional positioning error of XY table 44
3.2.2 The compensation method for the two-dimensional positioning error 45
3.2.3 Experiment 46
3.2.4 Results and Discussion 47
3.3 Pre-compensation techniques of the galvanometric scanning system 52
3.3.1 Distortion error in the galvanometric scanning system 52
3.3.2 Error Analysis of Galvanometric Scanning System 53
3.3.3 Compensation the field distortion error using Lagrangian interpolation 55
3.3.4 Experiment 56
3.4 Compensation of laser marking system using surface curve fitting function 62
3.4.1 Correction of Field Distortion 63
3.4.2 Experiment and Results 64

Chapter 4 Microvias formation of HDI PCBs and other applications 69
4.1 Microvias formation of the high-density interconnected printed circuit boards 69
4.1.1 The microvias formation of the HDI PCBs 70
4.1.2 Experiment 72
4.1.3 Results and Discussions 73
4.2 Development of CO2 laser marking system base on DSP controller 75
4.2.1 Laser marking methods 75
4.2.2 Design of DSP Based CO2 laser marking system 77
4.2.3 Experiment system 78
4.2.4 Experimental results and discussion 79
4.3 Laser coding on the eggshell by using CO2 laser marking system 82
4.3.1 Laser focus on the eggshell 83
4.3.2 Results and Discussion 84
4.4 Laser direct write patterning technique of indium tin oxide film 88
4.4.1 Experiment system 89
4.4.2 Laser patterning on the ITO films 90
4.4.3 Results and Discussion 91

Chapter 5 Conclusions and Outlook 93
Reference 97
Vita and Publications 101
Acknowledgements 106
[1] S. Raman, J. Davignon, M. DiMarcoberardino, Implementation of Laser Technology in New Application on PCB, ESI Report (2002).
[2] H. Nakahara, Microvia Boards, Taiwan Printed Circuit Association, Taiwan (2003), 4.
[3] S. Venkat and T. Hannon, Laser Processing-The Future of HDI Manufacturing, Electronics Manufacturing Technology Symposium, 27th Annual IEEE/SEMI International (2002), 149-153.
[4] H.J. Booth, Recent applications of pulsed lasers in advances materials processing, Thin solid films (2004), 450-457.
[5] J. Meijer, Laser Beam machining (LBM), state of the art and new opportunities, Journal of Materials Processing Technology (2004), 2-17.
[6] W.M. Steen, Laser Material Processing, 2nd Edition, Springer (2001).
[7] M. F. Chen, Y.P. Chen and W.T. Hsiao, The Studied of the acrylic material drilling used by the CO2 Laser, Proceedings of SPIE Vol. 5448 (2004), 837-843.
[8] I.V. Zsolt, Laser Processing of Adhesives and Polymeric Materials for Microelectronics Packaging Application, Adhesive joining and coating technology in electronics manufacturing (2000).
[9] J.C. Ion, Laser processing of engineering materials, Elsevier Butterworth-Heinemann (2005).
[10] N. Ikeda, T. Akaba, F. Inoue, S. Takahashi and O. Noda, Diode-Pumped Solid-State Ultraviolet Laser Micro Processing System, Technical Review Vol. 40 Extra No.2, Mitsubishi Heavy Industries Ltd. (2003), 1-5.
[11] W. M. Steen, Laser Material Processing, Springer-Verlag Berlin Heidelberg New York (2001).
[12] K.W. Eric, H.Y Zheng, G.C. Lim, Laser drilling of Micro-Vias in PCB Substrates, IEEE Electronics Packaging Technology Conference (2000), 321-326.
[13] J. Meijer, Laser Beam machining (LBM), state of the art and new opportunities, Journal of Materials Processing Technology (2004), 2-17.
[14] A. Kestenbaum, J.F. D』Amico, B.J. Blumenstock and M.A. Deangelo, Laser Drilling of Microvias in Epoxy-Glass Printed Circuit Boards, IEEE Transactions on Components, Hybrids, and Manufacturing Technology Vol. 13 No. 4 (1990), 1055-1062
[15] B. Gu and J.M. Morrison, Cost effective Small Via Generation-the Laser solution, IEEE (1994), 212-216.
[16] Z. Illyefalvi-Vitez, Laser Processing of Adhesives and Polymeric Materials for Microelectronics Packaging Application, Adhesive joining and coating technology in electronics manufacturing (2000), 289-295.
[17] Y. Mikado, Effects of HDI Materials for Laser Via Hole Forming, IEEE Polymers and Adhesives in Microelectronics and Photonics (2001), 213-217.
[18] S. Clouser and M. Sakamoto, Copper Foil Treatment for CO2 laser Direct Drilling, www.gouldelectron.com (2001).
[19] H. Xheng, E. Gan and G.C. Lim, Investigation of laser via formation technology for the manufacturing of high density substrates, Optics and Lasers in Engineering 36 (2001), 355-371.
[20] N. Wakabayashi, T. Ide and Y. Aoki, New drilling technique for multilayered materials by single shot laser irradiation, Applied Surface science 197-198 (2002) 873-876.
[21] C. Dunsky, High-Speed Microvia Formation with UV solid-state Lasers, Proceedings of The IEEE, Vol. 90 No. 10 (2002), 1670-1680.
[22] M. Naruse and K. Ijima, New Laser processing Machine for PCB Drilling 「L605GTW-5150U」, Technical Reports, Mitsubishi Electric ADVANCE (2005), 26-28.
[23] M. Placid, C. Ferreira, and l. Richard, An Analytical Quadratic Model for the Geometric Error of a Machine Tool, Journal of Manufacture System, Vol. 1 (1986), 51-63.
[24] G.X. Zhang, Error compensation for coordinate measuring machines, Machinery Monthly (Taiwan) Vol. 20, No.2 (1994), 132-137.
[25] K.C. Fan, C.Y. Lin, L.H. Hsu, Position error compensation for micro-positioning platform, Machinery Monthly (Taiwan), Vol. 27, No.2 (2001), 239-245.
[26] H.F.F. Castro and M. Burdekin, Dynamic calibration of the positioning accuracy of machine tools and coordinate measuring machines using a laser interferometer, International Journal of Machine Tools & Manufacture, Vol. 43 (2003), 947-954.
[27] J. Xie, S. Huang, Z. Duan, Y. Shi, S. Wen, Correction of the image distortion for laser galvanometric scanning system, Optics & Laser Technology 37 (2005) 305-311.
[28] G.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Addison-Wesley publishing Company, fifth edition (1996).
[29] J. Hwang, C.H. Park, C.H. Lee and S.W. Kim, Estimation and correction method for the two-dimensional position errors of a planar XY stage based on motion error measurements, International Journal of Machine Tools & Manufacture 46 (2006), 801-810.
[30] R. Paetzel, Comparison Excimer laser- Solid state laser, Technology Report, Lambda Physik AG.
[31] SCANLAB, Installation and Operation SK1020 Analog CO2, SCANLAB, Germany (2001).
[32] M.F. Chen, Y.P. Chen, Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines, International Journal of Machine Tools and Manufacture 47 (2007) 1114-1124.
[33] K. Fuse, T. Okada, Hi. Imamura, Diffractive/Refractive Hybrid F-Theta Lens for Laser Drilling of Multilayer Printed Circuit Boards, Proceedings of SPIE, Vol. 4830 (2003).
[34] B. Tan, K. Venkatkrishnan, N.R. Sivakumar, G.K. Gan, Laser Drilling of Thick Material Using Femtosecond Pulse with a Focus of Dual-Frequency Beam, Optics & Laser Technology, Vol. 35 (2003), 199-202.
[35] Galil Inc., DMC-18x2 user manual, Galil Motion Control, Inc., California, USA, (1999).
[36] M. Frakowiak, R. Grosvenor, P. Prickett, A review of the evolution of microcontroller-based machine and process monitoring, International Journal of Machine Tools & Manufacture 45 (2005), 573-582.
[37] R.E. Fischer, B. Tadic-Galeb, Optical System Design, McGraw-Hill, New York, (2000).
[38] A. Wehr, U. Lohr, An introduction and Overview ISPRS, Journal of Phorogrammetry and Remote Sensing 54 (1999), 68-82
[39] M.F. Chen, Y.P. Chen, Compensating technique of field-distorting error for the CO2 laser galvanometric scanning drilling machines, International Journal of Machine Tools & Manufacture 47 (2007), 1114-1124.
[40] Spinel Technology Co., STC-VC33 DSP Application User’s Guide v1.1, Spinel Technology Corporation (2002).
[41] A. Mcandrew, Introduction to digital image processing,, USA, Thomson (2004).
[42] B. Tan, K. Venkatkrishnan, N.R. Sivakumar, G.K. Gan, Laser Drilling of Thick Material Using Femtosecond Pulse with a Focus of Dual-Frequency Beam, Optics & Laser Technology. 35 (2003), 199-202.
[43] C.T. Chen, B.C. Wu, A.D. Jiang, G.M. You, A new-type ultraviolet SHG crystal-β-BaB2O4, J.S Cientia Sinica, Vol. B28 (1985), 235-243.
[44] F.C. Zumsteg, J.D. Bierlein, T.E. Gier, KxRb1-xTiOPO4: A new nonlinear optical material, Journal of Applied Physics, Vol. 47:11 (1976), 4980-4985.
[45] Y.C. Wu, T. Sasaki, S. Nakai, A. Yokotani , H.G. Tang, C.T. Chen, CsB3O5: A new nonlinear optical crystal, Applied Physics Letters, Vol. 62:21 (1993), 2614-2615.
[46] O. Yavas, M. Takai, High speed maskless laser patterning of thin films for giant microelectrnics, Japanese Journal of Applied Physics. Vol. 38 (1999), 7131-7134.
[47] O. Yavas and M. Takai, Effect of substrate absorption on the efficiency of laser patterning of indium tin oxide thin films, Journal of Applied Physics, Vol. 85 (1999), 4207-4212.
[48] James G. Lunney, Richard R. O』Neill, and Karl Schulmeister., Excimer laser etching of transparent conducting oxides, Applied Physics Letters, Vol. 59:6 (1991), 647-649.
[49] J.G. Liu, C.H. Chen, J.S. Zheng and J.Y. Huang, CO2 laser direct writing of silver lines on epoxy resin from solid film, Applied Surface Science, Vol. 245: 1-4 (2005), 155-161.
[50] D. Farson, H.W. Choi, K.R. Kim, Direct Write Patterning of ITO film by Femtosecond Laser Ablation, 6th International Symposium on Laser Precision Microfabrication, Williamsburg VA, U.S.A. (2005), 583.
[51] E. Hecht, OPTICS, Addison Wesley, Canada, 1990.
[52] R. C. Gonzalez, R. E. Woods, Digital Image Processing, 1st ed, New York, Addison Wesley (1993)
[53] S. E. Umbaugh, Computer Vision and Image Processing, 1st ed, USA, Prentice-Hall (1998)
[54] IEK化學與材料研究組,全球HDI市場現況分析,Flash News, Oct 4, 2007
[55] 蘇品書,」雷射原理與實用技術「,復漢出版社,民國90年
[56]台灣電路板協會,電路板機械加工技術,台灣電路板協會(2004),134-156
[57] www.brockstedt.de/en/desi/padsize.html
[58] www.chemitalic.dk/content/articles/hdi5.htm
[59] en.wikipedia.org/wiki/Laser_safety
[60]www.microscopyu.com/articles/fluorescence/lasersafety.html
[61] www.pp.okstate.edu/ehs/hazmat/labman/doc-pdf/CHAPTER6.doc
[62] www.sintecoptronics.com.sg/
[63] www.ukwelder.com/wk_menu_handler.php?menuitem=52
[64] www.hitachi-via.co.jp/seihin/densi_e.html#2
[65] www.esi.com/esi/products/eig/5330.htm
[66] www.LaserFX.com
[67] www.iiviinfrared.com/scanlensspecs.html#anchor2
[68] www.spiricon.com.tw
[69] www.galilmc.com/products/econo/dmc18x2.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔