跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/10/03 18:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王柏霖
論文名稱:脈衝磁控濺鍍製備ZnO:Mo薄膜及其表面粗化之研究
指導教授:林義成林義成引用關係
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:機電工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:脈衝磁控濺鍍表面粗化MZO薄膜薄膜太陽能電池
外文關鍵詞:Pulse magnetron sputterSurface textureMZO filmthin film solar cells
相關次數:
  • 被引用被引用:1
  • 點閱點閱:360
  • 評分評分:
  • 下載下載:98
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的採用脈衝磁控濺鍍製備MZO(ZnO:Mo)薄膜,並藉由化學濕式蝕刻進行薄膜表面粗化,於不同蝕刻時間下觀察薄膜對可見光之漫透射率與光電性質之影響。首先,以ZnO靶材上置放不同位置之鉬片,藉此改變Mo元素之含量,沈積於Corning 1731玻璃基板上。並透過調變濺鍍功率、工作壓力、脈衝頻率、薄膜厚度和基板溫度等參數來製備具最佳光電結構特性之MZO薄膜。其次,以KOH及HCl兩種不同的蝕刻液,調變蝕刻時間進行MZO薄膜表面粗化使其具有陷光結構;探討薄膜蝕刻後對電性、可見光的穿透及散射之影響。研究中利用薄膜測厚儀量測其薄膜厚度及沈積率、能量分散光譜儀量測成分含量、霍爾量測儀量測電阻率、載子濃度和載子遷移率、X光繞射儀做薄膜結構性分析、X光射線光電子能譜儀量測薄膜化學態分析、熱場發射掃描式電子顯微鏡觀察薄膜表面形貌,利用光譜儀做光穿透率量測,並以可變角度多功能光學特性檢測系統做總透射率與鏡面透射率量測,藉此換算出漫透射率的光譜圖。研究結果顯示,於Mo含量1.77wt.%、濺鍍功率100W、工作壓力0.4Pa、脈衝頻率10kHz、薄膜厚度500nm於室溫下,可獲得MZO 薄膜較低的電阻率為8.9×10-4Ωcm,可見光穿透率大於80%。考量光電特性等因素,我們選用0.5%HCl在300K攪拌的環境下蝕刻MZO薄膜3秒到6秒,可得到電阻率1.74~2.75×10-3Ωcm,可見光總透射率67~73%,可見光漫透射率25.1~28.4%,霧度值為0.34~0.42,薄膜表面火山口(Crates)直徑約220~350nm,可應用於薄膜太陽能電池前透明電極。
The purpose of this discourse was prepared MZO (ZnO:Mo) thin film by PMS (Pulse magnetron sputter), and then we used chemical wet etching to observed the effect of diffuse transmittance and electrical properties. First, changed the content of Mo element by different position of molybdenum sheet on ZnO ceramic target to deposit MZO film on glass substrate (Corning 1737). The structural, electrical and optical properties as a fuction of sputtering power, working pressure, pulse frequency, thin film thickness and substrate temperature were investigated. Second, ligh trapping structure of MZO thin film can be prepared by two kinds of etchant at varying the etching time, then discussing the effect of electrical, light scattering and transmittance properties. In the experiment, the film thickness and deposited rate were measured by a profilometer. The content of composition was measured by Energy dispersive spectrometer (EDS). Resistivity, carrier density and carrier mobility were measured by Hall effect measurement system. The analyse of crystallinity was measured by X-ray diffraction (XRD). Analyse of chemical valence was measured by X-ray photoelectron spectroscope (XPS). Surface texture was observed by thermal field emission scanning electron microscope (TF-SEM). Transmittance was measured by spectrometer. Total transmittance and Specular transmittance were measured by angle changeable optical characteristic measurement system to calculated diffuse transmittance. Result, The MZO film showed with the lowest resistivity was prepared by Mo concentration 1.77 wt.%, sputtering power 100W, working pressure 0.4Pa, pulse frequency 10kHz, thin film thickness 500nm at room temperature that showed a resistivity of 8.9×10-4Ωcm and a transmittance of 80% in the visible range. 0.5%HCl and 33%KOH etched 800nm thickness of MZO thin film. At the same thickness, the surface smooth, cavitation decreased and lower resistivity were etched by 33%KOH. Considering electrical, light scattering and transmittance properties, we choosed 0.5%HCl to etch MZO film during 3~6 second. Finally, we can get resistivity of 1.74~2.75×10-3Ωcm, total transmittance of 67~73% in the visible range, diffuse transmittance of 25.1~28.4% in the visible range and haze value between 0.32 to 0.42 for front electrode application of thin film solar cells.
目 次

摘要 I 
謝誌 IV
目次 V
表次 VIII
圖次 IX

第一章 緒論 1
1-1 研究動機 1
1-2 研究貢獻 2
1-3 名詞解釋 3

第二章 理論分析與文獻回顧 4
2-1 透明導電膜材料與製程 4
2-1-1 透明導電膜材料 4
2-1-2 鉬的基本性質 4
2-1-3 MZO透明導電膜 5
2-2 濺鍍原理 9
2-2-1 磁控濺鍍法 11
2-2-2 直流脈衝式磁控濺鍍 12
2-2-3 脈衝頻率對薄膜性質之影響 17
2-3 太陽能電池 20
2-3-1 太陽能電池基本原理 20
2-3-2 薄膜太陽能電池之材料與結構設計 21
2-3-3 透明導電膜於太陽能電池之應用 22
2-4 太陽能電池之TCO表面粗化原理與製程 23
2-4-1表面粗化原理 23
2-4-2表面粗化製程 25
2-4-3不同參數對透明導電膜濕蝕刻性質之影響 27

第三章 研究方法 34
3-1 實驗流程 34
3-2 實驗材料與試片準備 36
3-3 實驗步驟 36
3-3-1 基板準備與前處理準備 36
3-3-2 濺鍍製程系統 38
3-3-3 濺鍍參數與步驟 39
3-4 薄膜特性分析 40
3-4-1 沈積率量測 40
3-4-2 薄膜表面成分分析 41
3-4-3 薄膜化學性質分析 43
3-4-4 四點探針量測 44
3-4-5 霍爾量測儀電性量測 45
3-4-6 SEM表面影像 46
3-4-7 微結構分析 47
3-4-8 可見光穿透率量測 48
3-4-9 光學能隙計算 48
3-5 MZO透明導電膜表面粗化 49
3-5-1 蝕刻實驗 49
3-5-2 可見光漫透射率量測 50

第四章 結果與討論 52
4-1 不同鉬片位置之化學成分 52
4-2 Mo含量對MZO薄膜光穿透率及電阻率之影響 53
4-3 濺鍍參數對MZO光穿透率及電阻率之影響 58
4-3-1 功率對MZO薄膜光穿透率及電阻率之影響 58
4-3-2 工作壓力對MZO薄膜光穿透率及電阻率之影響 62
4-3-3頻率對MZO薄膜光穿透率及電阻率之影響 66
4-3-4 MZO薄膜厚度對MZO薄膜光穿透率及電阻率之影響 70
4-3-5 基板溫度對MZO薄膜電性之影響 74
4-4 表面粗化MZO薄膜對光電性質之影響 78
4-4-1 表面粗化MZO薄膜對電阻率之影響 78
4-4-2 表面粗化MZO薄膜對透射光之影響 82
4-4-3 表面粗化MZO薄膜對表面形貌之影響 88

第五章 結論與未來研究 93
5-1 結論 93
5-2 未來研究 94
參考文獻 95

表 次
表1 不同基板溫度對蝕刻前後電阻率之影響 30
表2 康寧玻璃1737F成份表 36
表3 蝕刻後薄膜厚度對應HCl與KOH所需之蝕刻時間 79


圖 次
圖1 氧化鋅結構圖 7
圖2 不同摻雜量對ITO薄膜吸收係數的平方與入射光能量的關 7
圖3 Burstein-Moss效應示意圖 8
圖4 不同MZO薄膜厚度對(a)電性及(b)穿透率之影響 8
圖5 電漿在腔體的各種反應示意圖 10
圖6 脈衝電源供應器提供五種電壓輸出模式示意圖 13
圖7 脈衝電源供應器避免異常放電之原理示意圖 14
圖8 脈衝循環及調控參數示意圖 15
圖9 優選濺射示意圖,(a)、(b)、(c)分別顯示正常模式、逆向模式及反轉模式三者的靶電壓及靶面發生情形 16
圖10頻率與功率及沈積率關係圖 17
圖11 不同頻率之XRD關係圖 18
圖12 不同頻率對薄膜晶粒大小影響 18
圖13 不同頻率對沈積率與電阻率之影響 19
圖14 不同頻率對薄膜穿透率之影響 19
圖15 太陽能電池的工作原理 21
圖16 (a)Superstrate架構與(b)Substrate架構於薄膜型矽基太陽能電池 22
圖17 a-Si:H/μc-Si:H電池p-i-n結構中的TCO 24
圖18 入射光經粗化過的薄膜所造成的(a)穿透與(b)反射 24
圖19 以CVD製程技術製作具有陷光結構的TCO薄膜 25
圖20 以射頻磁控濺鍍法製作ZnO薄膜,經稀鹽酸蝕刻之SEM影像圖 26
圖21 三種不同的表面形貌應用於μc-Si:H太陽能電池之量子效應與反射率圖27
圖22 (a)AFM 10×10μm2量測所得之不同三種結構與(b)不同鋁含量與基板溫度對蝕刻後的表面情況分佈圖 28
圖23 不同基板溫度與工作壓力所製程之薄膜,經稀鹽酸蝕刻後現的表面結構圖 29
圖24不同基板溫度對全透光率與漫射透光率之影響 30
圖25 不同沈積溫度對AZO薄膜之XRD與半高寬之影響 31
圖26 AZO薄膜經不同蝕刻時間(a)0秒,(b)20秒,(c)60秒之SEM表面結構 31
圖27 AZO薄膜以不同蝕刻時間對(a)太陽能電池I-V曲線之探討與(b)太陽能電池參數之影響 32
圖28 AZO薄膜蝕刻前後示意圖 32
圖29 AZO薄膜蝕刻前後應用於μc-Si:H太陽能電池之量子效應與吸收率圖 33
圖30 實驗流程圖 35
圖31 基板準備與前處理 37
圖32 薄膜濺鍍系統示意圖 39
圖33 薄膜段差測試儀 40
圖34 X光能量分散光譜 41
圖35 Mo片於靶材上之位置示意圖 42
圖36 化學分析電子能譜儀 43
圖37 四點探針電阻儀 44
圖38 霍爾量測儀 45
圖39 熱場發射掃描式電子顯微鏡 46
圖40 X-ray繞射儀 47
圖41 UV 1700紫外/可見光光譜儀 48
圖42 MFS-630 可變角度多功能光學特性檢測系統 50
圖43 入射光入射於表面粗化之薄膜示意圖 51
圖44 功率100W、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs時, Mo金屬片位置與Mo含量對照圖 52
圖45 功率100W、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,不同Mo含量對電性之影響圖 54
圖46 Mo含量1.77wt.%、功率100W、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,Mo 2p5/2之XPS能譜圖 55
圖47 功率100W、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同Mo含量對XRD與半高寬(FWHM)之影響圖 56
圖48 功率100W、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,不同Mo含量對(a)穿透率與(b)能隙之影響圖 57
圖49 Mo含量1.77wt.%、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同功率對電性之影響圖 59
圖50 Mo含量1.77wt.%、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同功率對XRD與半高寬(FWHM)之影響圖 60
圖51 Mo含量1.77wt.%、工作壓力0.4Pa、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同功率對(a)穿透率與(b)能隙之影響圖 61
圖52 Mo含量1.77wt.%、功率100W、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同壓力對電性之影響圖 63
圖53 Mo含量1.77wt.%、功率100W、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同壓力對XRD與半高寬(FWHM)之影響圖 64
圖54 Mo含量1.77wt.%、功率100W、膜厚500nm、頻率10kHz、脈衝反轉時間5μs,在不同壓力對(a)穿透率與(b)能隙之影響圖 65
圖55 Mo含量1.77wt.%、功率100W、膜厚500nm、工作壓力0.4Pa,能率循環約為95%時,在不同頻率對電性之影響圖 67
圖56 Mo含量1.77wt.%、功率100W、膜厚500nm、工作壓力0.4Pa,能率循環約為95%時,在不同頻率對XRD與半高寬(FWHM)之影響圖 68
圖57 Mo含量1.77wt.%、功率100W、膜厚500nm、工作壓力0.4Pa,能率循環約為95%時,在不同頻率對(a)穿透率與(b)能隙之影響圖 69
圖58 Mo含量1.77wt.%、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,在不同膜厚對電性之影響圖 71
圖59 Mo含量1.77wt.%、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,在不同膜厚對XRD之影響圖 72
圖60 Mo含量1.77wt.%、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,在不同膜厚對(a)穿透率與(b)能隙之影響圖 73
圖61 Mo含量1.77wt.%、膜厚500nm、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,在不同基板溫度對電性之影響圖 76
圖62 Mo含量1.77wt.%、膜厚500nm、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,在不同基板溫度對XRD與半高寬(FWHM)之影響圖 77
圖63 Mo含量1.77wt.%、膜厚800nm、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,能率循環為95%下製備MZO薄膜,經0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間所剩餘的膜厚對電性的影響 80
圖64 Mo含量1.77wt.%、膜厚800nm、功率100W、工作壓力0.4Pa、頻率10kHz、脈衝反轉時間5μs,能率循環為95%下製備MZO薄膜,經33%KOH腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間所剩餘的膜厚對電性的影響 81
圖65 Mo含量1.77wt.%、膜厚800nm之MZO薄膜以0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間 (a)0秒、(b)3秒、(c)6秒和(d)9秒之SEM俯視圖 89
圖66 Mo含量1.77wt.%、膜厚800nm之MZO薄膜以0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間 (a)0秒、(b)3秒、(c)6秒和(d)9秒之傾斜角45°SEM圖 90
圖67 Mo含量1.77wt.%、膜厚800nm之MZO薄膜以33%KOH腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間 (a)33秒、(b)66秒、(c)99秒和(d)100秒之SEM俯視圖 91
圖68 Mo含量1.77wt.%、膜厚800nm之MZO薄膜以0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間 (a)0秒、(b)3秒、(c)6秒和(d)9秒之傾斜角45°SEM圖 92
圖69 Mo含量1.77wt.%、膜厚800nm的MZO薄膜,經0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間對總透射率與漫透射率的光譜圖 83
圖70 Mo含量1.77wt.%、膜厚800nm的MZO薄膜,經0.5%HCl腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間對總透射率、漫透射率與霧度的影響 84
圖71 Mo含量1.77wt.%、膜厚800nm的MZO薄膜,經33%KOH腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間對總透射率與漫透射率的光譜圖 86
圖72 Mo含量1.77wt.%、膜厚800nm的MZO薄膜,經33%KOH腐蝕液蝕刻於300K攪拌的環境下,在不同的蝕刻時間對總透射率、漫透射率與霧度的影響 87
[1]K. Tominaga, M. Kataoka, H. Manabe, T. Ueda, I. Mori, “Transparent ZnOAl films prepared by co-sputtering of ZnO:Al with either a Zn or an Al target”, Thin Solid Films 290-291, 1996, pp.84-87.
[2]H. Sheng, N. W. Emanetoglu, S. Muthukumar, B.V. Yakshinskiy, S. Feng, and Y. Lu,“Ta/Au Ohmic Contacts to n-Type ZnO”, Journal of Electronic Materials, 32, 2003, pp.935-938.
[3]S. Choi, G. Shin, H. Byum, S. G. Oh, S. G. Oh, s. Lee,“Application of interferometry for 3-dimensional visualization of MgO-layer erosion in a.c.-plasma display panels”, Surface and Coatings Technology, 169-170,2003, pp557-561.
[4]Y. C. Lin, S. J. Chang, Y. K. Su, T. Y. Tasi, C. S. Chang, S. C. Shei, C. W. Kuo, S. C. Chen, “InGaN/GaN ligh emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts”, Solid-state Electronics, 47, 2003, pp.849-853.
[5]J. Wienke, B. van der Zanden, M. Tijssen, M. Zeman, “Performance of spray-deposited ZnO:In layers as front electrodes in thin-film silicon solar cells”. Solar Energy Materials and Solar Cells 92, 2008,pp.884-890.
[6]J.A. Anna Selvan, Alan E. Delahoy, Sheyu Guo, Yuan-Min Li, “A new light trapping TCO for nc-Si:H solar cells”, Solar Energy Materials and Solar Cells 90, 2006, pp.3371-3376.
[7]M. Kambe, M. Fukawa, N. Taneda, K. Sato, “Improvement of a-Si solar cell properties by using SnO2:F TCO films coated with an ultra-thin TiO2 layer prepared by APCVD”, Solar Energy Materials and Solar Cells 90, 2006, pp.3014-3020.
[8]S. Major, Satyendra Kumar, M. Bhatnagar, and K. L. Chopra,“Effect of hydrogen plasma treatment on transparent conducting oxides”, Applied Physic Letters 49, 1986, pp.394-396.
[9]T. Minami, H. Sato, H. Nanto, and S. Takata, “Group III impurity doped zinc oxide thin films prepared by RF magnetron sputtering”, Japanese Journal of Applied Physics 24 ,1985, pp. L781-L784.
[10]K. Ellmer, “Magnetron sputtering of transparent conductive zinc oxide: relation between the sputtering parameters and the electronic properties”, Journal of Physics D: Applied Physics 33, 2000, pp.R17-R32.
[11]楊明輝, “透明導電膜”, 藝軒圖書出版社
[12]X.W. Xiu, Z.Y. Pang, M.S. Lv, Y. Dai, L.N. Ye, S.H. Han, “Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering”, Applied Surface Science 253, 2007, pp.3345-3348.
[13]R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp, M.C.M. van de Sanden, “Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD”, Thin Solid Films 392, 2001, pp.226-230.
[14]B. Rech, S. Wieder, C. Beneking, A. Löffl, O. Kluth, W. Reetz, and H. Wagner, “Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells”, Photovoltaics Specialists Conference 26th, 1997, pp.619-622.
[15]T. Minami, “Transparent conducting oxide semiconductors for transparent electrodes”, Semiconductor Science and Technology 20, 2005, pp.35-44.
[16]S.P. Singh, A.K. Saxena, L.M. Tiwari, O.P. Agnihotri, “SnO2:F/n-Si and In2O3:Sn/n-Si semiconductor/insulator/ semiconductor solar cells”, Thin Solid Films 127, 1985, pp.77-84.
[17]M. Berginski, J. Hüpkes, W. Reetz, B. Rech, M. Wuttig, “Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application”, Thin Solid Films 516, 2008, pp.5836-5841
[18]S. Major, Satyendra Kumar, M. Bhatnagar, and K. L. Chopra,“Effect of hydrogen plasma treatment on transparent conducting oxides”, Physical Department, accepted for publication 20, 1986.
[19]http://environmentalchemistry.com/yogi/periodic/Mo.html
[20]W. J. Jeong and G. C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters”, Solar Energy Materials & Solar Cells 65, 2001, pp.37-45.
[21]X. Hao, J. Ma, D. Zhang, T. Yang, H. Ma, Y. Yang, C. Cheng and J. Huang, “Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates”, Applied Surface Science 183, 2001, pp.137-142.
[22]I. Hamberg, C. G. Granqvist, K. -F. Berggren, B. E. Sernelius, and L. Engström, “Band-gap widening in heavily Sn-doped In2O3” , Physical Review 30, 1984, pp.3240-3249.
[23]D. L. Raimondi and E. Kay, “High resistivity transparent ZnO thin films”, Journal of Vacuum Science Technology 7, 1970, pp.96-99.
[24]R. E. I. Schropp and A. Madan , “Properties of conductive zinc oxide films for transparent electrode applications prepared by rf magnetron sputtering”, Journal of Applied Physics 66, 1989, pp.2027.
[25]G. A. Hirata, J. Mckittrik, T. Cheeks, J. M. Siqueiros, J. A. Diaz, O. Contreras, O. A. Lopez, “Synthesis and optelectronic characterization of gallium doped zinc oxide transparent electrodes”, Thin Solid Films 288, 1996, pp.29-31.
[26]B. H. Choi and H. B. Im, “Optical and electrical properties of Ga2O3-doped ZnO films prepared by r.f. sputtering”, Thin Solid Films 193, 1990, pp.712-720.
[27]Y. Meng, X. Yang, H. Chen, J. Shen, Y. Jiang, Z. Zhang, Z. Hua, “A new transparent conductive thin film InO :Mo”, Thin Solid Films 394, 2001, pp.219-223.
[28]K. C. Park, D. Y. Ma, K. H. Kim, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering” Thin Solid Films 305, 1997, pp.201-209.
[29]X. W. Xiu, Z. Y. Pang, M. S. Lv, Y. Dai, L. N. Ye, S. H. Han, “Transparent conducting molybdenum-doped zinc oxide films deposited by RF magnetron sputtering”, Applied Surface Science 253, 2007, pp.3345-3348.
[30]A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde, “Pulsed-DC reactive sputtering of dielectrics: pulsing parameter effects”, 43rd Annual Technical Conference Proceedings - Denver (Society of Vacuum Coaters), 2000, pp. 86-90.
[31]T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda and K. Wasa, “Heteroepitaxial growth of YSZ films on Si(100) substrate by using new metallic mode of reactive sputtering”, Vacuum 51, 1998, pp.583-590.
[32]B. Chapman, “Glow discharge process”, John Wiley & Sons, New York, 1980 Chap.6, pp.260-269.
[33]葉通迪,“純直流及非對稱雙極脈衝直流離子氮化鈦之研究”,私立逢甲大學碩土論文,2001。
[34]J. C. Sellers, ENI, “Asymmetric bipolar pulse DC an enabling technology for reactive PVD”, ENI.100 High-power Rochester, 1996, NY14623.
[35]Y.C. Lin , J.Y. Li, W.T. Yen, “Low temperature ITO thin film deposition on PES substrate using pulse magnetron sputtering”, Applied Surface Science 254, 2008, pp.3262-3268.
[36]J. T. Verdeyen, J. Beberman and L. Overzet, “Modulated discharges: Effect on plasma parameters and deposition”, Journal of Vacuum Science Technology A8, 1990, pp.1851-1856.
[37]L. B. Jonsson, T. Nyberg, I. Katardjiev, S. Berg, “Frequency response in pulsed DC reactive sputtering processes”, Thin Solid Films 365, 2000, pp.43-48.
[38]A. Belkind, Z. Zhao, D. Carter, L. Mahoney, G. McDonough, G. Roche, R. Scholl and H. Walde, “Pulsed-DC reactive sputtering of dielectrics: pulsing parameter effects”, 43rd Annual Technical Conference Proceedings - Denver (Society of Vacuum Coaters), 2000, pp. 86-90.
[39]H. Ko, W. P. Tai, K. C. Kim, S. H. Kim, S. J. Suh, Y. S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering” , Journal of Crystal Growth 277,2005, pp.352-358.
[40]“Optoelectronics and Photonics Priciples and Practices”, S.O. Kasap
[41]B. Rech, S. Wieder, C. Beneking, A. Löffl, O. Kluth, W. Reetz, and H. Wagner, “Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells”, Photovoltaics Specialists Conference 26th, 1997, pp.619-622.
[42]S. Major, Satyendra Kumar, M. Bhatnagar, and K. L. Chopra,“Effect of hydrogen plasma treatment on transparent conducting oxides”, Physical Department, accepted for publication 20, 1986
[43]R. Groenen, J. Löffler, P.M. Sommeling, J.L. Linden, E.A.G. Hamers, R.E.I. Schropp, M.C.M. van de Sanden, “Surface textured ZnO films for thin film solar cell applications by expanding thermal plasma CVD”, Thin Solid Films 392, 2001, pp.226-230.
[44]B. Rech, S. Wieder, C. Beneking, A. Löffl, O. Kluth, W. Reetz, and H. Wagner, “Texture etched ZnO:Al films as front contact and back reflector in amorphous silicon p-i-n and n-i-p solar cells”, Photovoltaics Specialists Conference 26th, 1997, pp.619-622.
[45]K. Ruhi, K. Bengü, “Effects of the back reflector on the optical enhancement factor anf quantum efficiency of a-Si:H p-i-n solar cells”, Department of Physical 26, 2002, pp. 363-368.
[46]T. Tohsophon, J. Hüpkes, H. Siekmann, B. Rech, M. Schultheis, N. Sirikulrat, “High rate direct current magnetron sputtered and texture-etched zinc oxide films for silicon thin film solar cells”, Thin Solid Films 516, 2008, pp.4628-4632.
[47]J. Springer, B. Rech, W. Reetz, J. M. uller, M. Vanecek “Light trapping and optical losses in microcrystalline silicon pin solar cells deposited on surface-textured glass/ZnO substrates” Solar Energy Materials & Solar Cells 85, 2005, pp.1-11.
[48]J. Krč, M. Zeman, O. Kluth, F. Smolea, M. Topič, “Effect of surface roughness of ZnO:Al films on light scattering in hydrogenated amorphous silicon solar cells”, Thin Solid Films 426, 2003, pp. 296-304.
[49]http://www.agc.co.jp/english/rd/topics_04.html
[50]J. Müller, B. Rech, J. Springer, M. Vanecek, “TCO and light trapping in silicon thin film solar cells”, Solar Energy 77, 2004, pp.917-930.
[51]J. Hüpkes, B. Rech, S. Calnan, O. Kluth, U. Zastrow, H. Siekmann, M.Wuttig, “Material study on reactively sputtered zinc oxide for thin film silicon solar cells”, Thin Solid Films 502, 2006, pp. 286-291.
[52]M. Berginski, J. Hüpkes, M. Schulte, G. Schöpe, H. Stiebig, and B. Rech, “The effect of front ZnO:Al surface texture and optical transparency on efficient light trapping in silicon thin-film solar cells”, Journal of applied physics 101, 2007.
[53]J. Hüpkes, B. Rech, O. Kluth, T. Repmann, B. Zwaygardt, J. Müller, R.Drese, M. Wuttig, “Surface textured MF-sputtered ZnO films for microcrystalline silicon-based thin-film solar cells”, Solar Energy Materials & Solar Cells 90, 2006, pp.3054-3060.
[54]Y. Jinsu, L. Jeonghul, K Seokki, Y. Kyunghoon, I. Jun Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, and Y. Junsin, “High transmittance and low resistive ZnO:Al films for thin film solar cells”, Thin Solid Films 480-481, 2005, pp.213-217.
[55]Y. Jinsu, L. Jeonghul, K Seokki, Y. Kyunghoon, I. Jun Park, S. K. Dhungel, B. Karunagaran, D. Mangalaraj, and Y. Junsin, “The properties of surface textured ZnO:Al films for thin film solar cells”, Physical Status Solidi (c) 2, No.3,2005 , pp. 1228-1232.
[56]W. Beyer, J. Hüpkes , H. Stiebig, “Transparent conducting oxide films for thin film silicon photovoltaics”, Thin Solid Films 516, 2007, pp.147-154.
[57]http://www.corning.com/.
[58]汪建民, “材料分析”,中國材料科學學會, pp.73-81.
[59]Y.S. Jung, J.Y. Seo, D.W. Lee, D.Y. Jeon “Influence of DC magnetron sputtering parameters on the properties of amorphous indium zinc oxide thin film”, Thin Solid Films 445, 2003, pp.63-71.
[60]E. Fortunato, P. Nunes, D. Costa, D. Brida, I. Ferreira, R. Martins “Characterization of aluminium doped zinc oxide thin films deposited on polymeric substrates” Vacuum 64, 2002. pp.233-236.
[61]D. Dimova-Malinovska, N. Tzenov, M. Tzolov, L. Vassilev, “Optical and electrical properties of R.F. magnetron sputtered ZnO:Al thin films”, Materials Science and Engineering B52, 1998, pp.59-62.
[62]Y.C. Lin, C.R. Hong, H.A. Chuang, “Fabrication and analysis of ZnO thin film bulk acoustic resonators”, Applied Surface Science 254, 2008, pp.3780-3786.
[63]P. Canhola, N. Martins, L. Raniero, S. Pereira, E. Fortunato, I.Ferreirab, R. Martins, “Role of annealing environment on the performances of large area ITO films produced by rf magnetron sputtering” Thin Solid Films 487, 2005, pp.271-276.
[64]H. Ko, W.P. Tai, K.C. Kim, S.H. Kim, S.J. Suh, Y.S. Kim, “Growth of Al-doped ZnO thin films by pulsed DC magnetron sputtering” , Journal of Crystal Growth 277, 2005, pp.352-358.
[65]H.M. Kim, S.K. Jung, J.S. Ahn, Y.J. Kang and K.C. Je, “Electrical and optical properties of In2O3-ZnO films deposited on polyethylene terephthalate substrates by radio frequency magnetron sputtering”, The Japan Society of Applied Physics, 42, 2003, pp.223-227.
[66]W.J. Jeong, G.C. Park, “Electrical and optical properties of ZnO thin film as a function of deposition parameters”, Solar Energy Materials & Solar Cells, 65, 2001, pp.37-45.
[67]K. Matsubar, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, “ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications”, Thin Solid Films 431-432, 2003, pp. 369-372.
[68]S. Suzuki, T. Miyata, M. Ishii, T. Minami, “Transparent conducting V-co-doped AZO thin films prepared by magnetron sputtering”, Thin Solid Films 434, 2003, pp.14-19.
[69]K.H. Kim, K.C. Park and D.Y. Ma, “Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering”, J. Appl. Phys. 81, 1997, pp.7764-7772.
[70]S.N. Alamri, A.W. Brinkman, “ The effect of the transparent conductive oxide on the performance of thin film CdS/CdTe solar cells” , Journal of Physics D:Applied Physics 33, 2000, pp.L1-L4.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top