一、 中文文獻
[1] 丁一賢,陳牧言,2003,資料探勘,台中:滄海書局。
[2] 吳成柯、戴善榮、程湘君、雲立實譯,Rafael C. Gonzalez, Richard E. Woods著,2001,數位影像處理,台北:儒林圖書有限公司。
[3] 林群雄、吳建樺,2006,使用多類支持向量機混合三角偵測做人臉辨識,電子商務與數位生活研討會,台北大學。
[4] 曹又仁,2005,結合小波轉換與紋&;#63972;特徵之彩色影像檢&;#63850;,國立中山大學機械與機電工程研究所碩士論文。
[5] 曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,2005,資料探勘,台北:旗標出版股份有限公司。
[6] 單維彰,2000,&;#63829;波初步,台&;#63843;:全華科技圖書有限公司。
[7] 黃嘉政,2007,應用資料探勘技術於抗核抗體螢光顯影分析,國立嘉義大學資訊管理研究所碩士論文。[8] 繆紹綱譯,Rafael C. Gonzalez, Richard E. Woods, and Steven L. Eddins著,2005,數位影像處理-運用MATLAB,台北:東華書局。
二、 英文文獻
[1] Almuallim, H. and Dietterich., T.G., “Learning Boolean Concepts in the Presence of Many Irrelevent Features,” Aritificial Intellgence(1) 1994, pp. 279-305.
[2] Ben-Bassat, M., “Pattern recognition and reduction of dimensionality. In Krishnaiah, P.R. and Kanal, L.N., editors, Handbook of statistics-II,” North Holland, 1982.
[3] Blum, A. and Langley, P., “Selection of Relevant Features And Examples In Machine Learning,” Artificial Intelligence(97) 1997, pp. 245-271.
[4] Boland, M.V., Markey, M.K., and Murphy, R.F., “Automated Recognition of Patterns Characteristic of Subcellular Structures in Fluorescence Microscopy Images,” Cytometry (33) 1998, pp. 366-375.
[5] Canny, J., “A Computational Approach To Edge Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence(8) 1986, pp.679-698.
[6] Chen, E.L., Chung P.C., Chen, C.L., Tsai, H.M., and Chang, C.I., “An Automatic Diagnostic System for CT Liver Image Classification,” IEEE Transactions on Biomedical Engineering (45) 1998, pp. 783-794.
[7] Castellano, G., Bonilha, L., Li, L.M., and Cendes, F., “Texture Analysis of Medical Images,” Clinical Radiology (59) 2004, pp. 1061-1069.
[8] Chang, Y., Stanley, R.J., Moss, R.H., and Stoecker, W.V., “A Systematic Heuristic Approach for Feature Selection For Melanoma Discrimination Using Clinical Images,” Skin Research and Technology (11) 2005, pp. 165-178.
[9] Dash, M. and Liu, H., “Feature Selection Methods For Classifications,” Intelligent Data Analysis: An International Journal(13) 1997, pp. 131-156.
[10] Ding, L. and Goshtasby, A., “On the Canny Edge Detector,” Pattern Recognition (34) 2001, pp. 721-725.
[11] Dhawan, A., Medical Image Analysis, John Wiley, New York, 2003.
[12] Fu, J.C., Lee, S.K., Wong, S.T.C., Yeh, J.Y., Wang, A.H., and Wu, H.K., “Image Segmentaion Feature Selectioin and Pattern Classification for Mammographic Microcalcifications,” Computerized Medical Imaging and Graphics (29) 2005, pp. 419-429.
[13] Gonzalez, R.C., and Woods R.E., Digital Image Processing (2nd ed.), Prentice Hall, 2002.
[14] Gonzalez, R.C., Woods R.E., and Eddins, S.L., Digital Image Processing Using MATLAB (1st ed.), Prentice Hall, 2003.
[15] Gletsos, M., Mougiakakou, S.G., Matsopoulos, G.K., Nikita, K.S., Nikita, A.S., and Kelekis, D., “A Computer-Aided Diagnostic System to Characterize CT Focal Liver Lesions : Design and Optimization of a Neural Network Classifier,” IEEE Transactions on Biomedical Engineering (7) 2003, pp. 153-162.
[16] Hahm, D. and Anderer, U., “Establishment of HEp-2 Cell Preparation for Automated Analysis of ANA Fluorescence Pattern,” Cytometry (69) 2006, pp. 178-181.
[17] Haralick, R.M., Shanmugam, K., and Dinstein I., “Textural Features for Image Classification,” IEEE Transaction on Systems, Man, and Cybernetcs(3) 1973, pp. 610-621.
[18] Huang, Y.L., Chung, C.W., Hsieh, T.Y., and Jao, Y.L., “Outline Detection for the HEp-2 Cell in Indirect Immunofluorescence Images Using Watershed Segmentation,” IEEE International Conference on Sensor Network, Ubiquitous, and Trustworthy Computing, 2008, pp. 423-427.
[19] Kantardzic, M., Data Mining : Concepts, Models, Methods, and Algorithms, John Wiley, New York, 2003.
[20] Keerthi, S.S., Shevade, S.K., Bhattacharyya, C., and Murthy K.R.K., “Improvements to Platt’s SMO Algorithm for SVM Classifier Design,” Neural Computation(13) 2001, pp. 637-649.
[21] Kira, K. and Rendell, I.A., “The Feature Selection Problem : Traditional Methods and A New Algorithm,” Proceedings of 10th Nat Conf Artifi Intell, 1992, pp. 129-134.
[22] Kohavi, R.(1995), “Wrappers For Performance Enhancement And Oblivious Decision Graphs,” PhD Thesis, Department of Computer Science, Standford University, Stanford, CA.
[23] Koller, D. and Sahami, M., “Toward Optimal Feature Selection,” Machine Learning: Proceedings of the Thirteenth International Conference, 1996, pp. 284-292
[24] Li, Y. and Zou, X., “Image Edge Detection By Means Of Bivariate Non-Tensor Product Wavelet,” Journal of Jilin University (42) 2004, pp. 483-488.
[25] Liu, H. and Motoda H., Feature Selection For Knowledge Discovery And Data Mining, Kluwer Academic Publishers, 1998.
[26] Merphy, R.F., Boland, M.V., and Velliste M., “Towards a Systematics for Protein Subcellular Location : Quantitative Description of Protein Localization Patterns and Automated Analysis of Fluorescence Microscope Images,” Proceedings of the Eighth International Conference on Intelligent Systems for Molecular Biology, 2000, pp. 251-259.
[27] Michael, M., and Gordon, P.C., “Did Tom Tattoo The Girl? Differential Effects Of Reader’s Interpretation On The Time Course Of Reanalysis,” AMLaP, 2004.
[28] Mitchell, M.T., Machine Learning, McGraw Hill, New York, 1997.
[29] Mitra, S. and Acharya, T., Data Mining : Multimedia, Soft Computing, and Bioinformatics, Wiley-Interscience, 2003.
[30] Nattkemper, T.W., Wersing, H., and Walter Schubert, H.R., “A Neural Network Architecture for Automatic Segmentation of Fluorescence Micrographs,” Neurocomputing (48) 2002, pp. 357-367.
[31] Perner, P., “Classification of HEp-2 Cells Using Fluorescent Image Analysis and Data Mining,” Medical Data Analysis (2199) 2001, pp. 219-224.
[32] Perner, P., Perner, H., and Muller, B., “Mining Knowledge for HEp-2 Cell Image Classification,” Journal Artificial Intelligence in Medicine (26) 2002, pp. 161-173.
[33] Quinlan, J.R., C4.5 : Programs for Machine Learning, Morgan Kaufmann, 1993.
[34] Svolos, A.E. and Pokropek, A.T., “Time and Space Results of Dynamic Texture Feature Extraction in MR and CT Image Analysis,” IEEE Transactions on Information Technology in Biomedicine(2) 1998 pp. 48-54.
[35] Sack, U., Knoechner, S., Warschkau, H., Pigla, U., Emmrich, F., and Kamprad, M., “Computer-Assisted Classification of HEp-2 Immunofluorescence Patterns in Autoimmune Diagnostics,” Autoimmunity Reviews (2) 2003, pp. 298-304.
[36] Shah, P.S.K. and Gandhi, V., ”Image Classification Based on Textural Features Using Artificial Neural Network(ANN),” IE(I) Journal-ET (84) 2004, pp. 72-77.
[37] Siedlecki, W. and Kulikowski, C.A., “On Automatic Feature Selection,” International Jorunal of Pattern Recognition and Artificial Intelligence(2) 1988, pp. 197-220.
[38] Sim, J. and Wright C.C., ” The Kappa Statistic in Reliability Studies : Use, Interpretation, and Sample Size Requirements,” Phys Ther. 2005, 85 : pp 257-268.
[39] Tang, X., ”Texture Information in Run-Length Matrices,” IEEE Transactions on Image Processing(7) 1998, pp. 1620-1609.
[40] Vapnik, V.N., “An overview of statistical learning theory,” IEEE Transactions on Networks(10) 1999, pp. 988-999.
[41] Witten, I.H. and Frank, E., Data Mining: Practical Machine Learning Tools and Techniques (2nd ed.), Morgan Kaufmann, 2005.
[42] Yang, F. and Jiang, T., “Cell Image Segmentation with Kernel-Based Dynamic Clustering and An Ellipsoidal Cell Shape Model,” Journal of Biomedical Information (34) 2001, pp. 67-73.
[43] Zhang, J. and Tan, T., “Brief Review of Invariant Texture Analysis Methods,” Pattern Recognition (35) 2002, pp. 735-747.