(3.231.29.122) 您好!臺灣時間:2021/02/26 01:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐依芳
研究生(外文):Yi-Fang Hsu
論文名稱:Debaryomyces hansenii DhSSA基因之選殖與鹽誘導表現
論文名稱(外文):Cloning and expression of SSA homologue gene induced by salt from Debaryomyces hansenii
指導教授:顏永福
指導教授(外文):Yung-Fu Yen
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:生物農業科技學系碩士班
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
畢業學年度:96
語文別:中文
中文關鍵詞:基因表現熱休克蛋白70
相關次數:
  • 被引用被引用:1
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Debaryomyces hansenii可生存在 24% NaCl環境下,較Saccharomyces cerevisiae的耐&;#22633;性高,但其耐&;#22633;機制仍不清楚。本試驗利用高&;#22633;處理D. hansenii誘導耐&;#22633;基因的表現,再選殖出被誘導的基因DhSSA,期能瞭解這個基因與耐&;#22633;的關係,進而應用於改善作物耐&;#22633;性。將 D. hansenii 培養於 YM 培養基 24℃ 20 小時後,再以含 2.5M NaCl 的YM培養基培養24分鐘後,利用 Forward Subtractive Hybridization 方法所獲得的產物中選取 1 kb 位置的 DNA 片段,進一步利用RACE (rapid amplification of cDNA ends) 方法選殖出完整的DhSSA (SSA homologue gene of D. hansenii)。該基因全長為 2,102 bp,5’UTR 長 53 bp,3’UTR 長 96 bp,ORF 為1,929 bp,轉譯成642個胺基酸,蛋白質分子量為69.943 kDa,比對NCBI 核酸資料庫,DhSSA與Candida albicans SC5314的HSP70 family cDNA 具有 87% 的相似度。D. hansenii genomic DNA 以限制酵素EcoRⅠ、BamHⅠ及HimdⅢ 處理後,進行 Southern blot 分析,得知此基因在基因體中為單套基因。為証實此基因是由高&;#22633;所誘導表現,將 D. hansenii培養在 2.5 M NaCl 之YM培養基,培養 12、24、48及72分鐘,再以semi-quantitative RT-PCR 分析,結果顯示對照組(未處理) DhSSA 基因表現較低,但DhSSA 的表現量隨著處理時間 12、24及48 分鐘而增加,在 48 分鐘時表現量可達最高,而在 72 分鐘後該基因表現量開始下降。Real-time 相對定量PCR 分析,結果顯示在 12、24 、48 及 72 分鐘,DhSSA 表現量增加分別為對照組的 9、15、31及 7 倍,此結果與semiquantitative RT-PCR吻合。所以 DhSSA 基因在無&;#22633;的培養基,僅有低量的表現,而當 D. hansenii 以 2.5 M NaCl 處理後,其 DhSSA 即被誘導表現,經過一段時間後其表現下降。以 Western blot 進行分析,結果顯示&;#22633;處理後的蛋白質表現量較對照組高,証實 2.5 M NaCl 可以誘導 DhSSA 基因及蛋白質表現量增加。為了探討 DhSSA 在酵母菌的分怖,首先構築 DhSSA/pMETB表現質體並轉型至酵母菌中,以 methanol 誘導融合蛋白表現,再以 anti-V5 抗體進行細胞螢光免疫法,結果顯示綠色螢光散佈於細胞質中,証實 DhSSA 蛋白分佈於細胞質中。利用 DhSSA 基因的 DNA 與 amino acid sequences 與 NCBI 的基因庫資料進行比對分析發現,它是 heat shock protein 70 (HSP70s) family的 SSA,HSP70s 普遍存在原核及真核生物中,序列具有高度保留性,可被熱逆境誘導,具幫助新合成蛋白質之摺疊與修正錯誤摺疊蛋白質之功能,當D. hansenii處於高&;#22633;環境下, DhSSA 基因的會表現,可能幫助 D. hansenii 在高&;#22633;環境時維持蛋白質之結構。
中文摘要............................ Ⅰ
英文摘要............................Ⅲ
目錄..............................Ⅴ
圖次..............................Ⅹ
表次.............................ⅩⅡ
壹、 前言............................1
貳、 前人研究..........................3
一、 Debaryomyces hansenii 之耐鹽特性及機轉..........3
(一) D. hansenii 特性....................3
(二) D. hansenii 之耐鹽性..................3
(三) D. hansenii 耐鹽機轉之訊息傳遞.............4
1. HOG pathway....................4
2. Calcium-dependent signal pathway............4
(四) D. hansenii 耐鹽之基因.................5
1. DhNHA1......................5
2. DhGDP1 和 DhGPP ................5
3. DHAL2 ......................5
4. DhENA1 和 DhENA2 ................5
5. DhGDH 和 DhGLN1 ................5
6. DhARO4 .....................6
二、 Heat shock proteins (HSPs)................6
(一) HSPs 之發現.....................6
(二) HSPs 之功能.....................6
三、 Heat shock protein 70s (HSP70s)..............7
(一) HSP70s 之結構.....................7
1. ATPase domain....................8
2. substrate boinding domain................8
3. C-terminal domain...................8
(二) HSP70s 與其他 HSPs 之相互作用.............9
1. HSP40........................9
2. HSP90s........................9
3. HSP105........................9
4. HSP110........................9
(三) 哺乳類 HSP70s 之功能..................10
(四) HSP70s Gene families....................10
1. SSA 基因.......................10
2. SSB 基因.......................11
3. SSD1(KAR2) 基因...................12
4. SSC、 SSQ、ECM10基因................12
(五) HSP70s 之基因調控...................12
(六) HSPs 與逆境......................13
四、 基因定量.........................13
(一) Reverse Transcription-Polymerase Chain Reaction (RT-PCR) ..13
(二) Real-time PCR.....................14
參、 材料與方法.........................15
一、 DhSSA 基因片段的選殖..................15
(一) Cloning for subtracted cDNA...............15
(二) DNA電泳膠分離subtraction PCR產物...........15
(三) Subtraction PCR 產物純化................15
(四) Subtraction PCR 產物構築至載體中............16
(五) 轉型作用 (Transformation).................16
(六) 小量質體 DNA 的製備..................17
(七) 確認 PCR 產物構築成質體................18
(八) 序列分析........................18
二、 選殖全長 DhSSA 基因...................20
(一) Yeast total RNA製備...................20
(二) RACE (rapid amplification of cDNA ends)...........21
(三) PCR產物構築成質體...................24
(四) 轉型作用 (Transformation).................24
(五) 小量質體 DNA 的製備..................24
三、 Southern blot 分析基因數...................25
(一) Genome DNA 製備....................25
(二) genome DNA digestion...................26
(三) Probe製備........................27
(四) DNA 電泳膠分離 genome DNA...............27
(五) DNA轉漬到膜上及固定..................27
(六) Prehybridization、hybridization及posthybridization.......28
(七) 免疫呈色反應.......................29
四、 DhSSA 基因表現量分析....................29
(一) Yeast total RNA 製備....................30
(二) DhSSA 基因表現半定量分析 Semi-quantitative RT-PCR.....31
(三) 基因表現定量分析Real time PCR (Relative Quantitation).....33
五、 HSP70s 蛋白質表現量分析..................34
(一) Yeast total protein製備...................34
(二) 聚丙醯氨凝膠電泳 (Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS – PAGE) ...............35
(三) 西方點墨法 (Western blot) 分析...............35
六、 HSP70s 蛋白質表現位置分析.................37
(一) 構築 DhSSA/pGEM-T質體.................37
(二) 構築 DhSSA/pMETB 酵母菌表現質體............38
(三) 細胞免疫螢光染色法進行 in situ 分析.............41
七、 HSP70s 蛋白質結構分析...................42
(一) HSP70s 蛋白質表現位置分析................42
(二) HSP70s 蛋白質domain 與功能位置之分析...........42
肆、 實驗結果............................43
一、 DhSSA 基因片段的選殖....................43
二、 選殖全長DhSSA基因.....................43
三、 Southern blot 分析基因數...................45
四、 DhSSA基因表現量分析....................45
(一) 半定量分析 (Semi-quantitative RT-PCR) DhSSA基因表現....45
(二) 定量分析 ( Real time Relative Quantitation PCR ) DhSSA基因表現...........................46
五、 DhSSA (HSP 70s) 蛋白質表現量分析.............46
六、 DhSSA (HSP 70s) 蛋白質表現位置分析............47
伍、 討論............................67
一、 DhSSA 基因片段的選殖..................67
二、 選殖全長 DhSSA 基因...................68
三、 DhSSA 基因序列之探討..................69
四、 DhSSA 蛋白質序列與功能探討...............70
(一) DhSSA 蛋白質 N 端 ATPase domain 之序列與功能.....71
(二) DhSSA 蛋白質 C 端 C- terminal domain 之序列與功能....72
五、 DhSSA 基因表現量分析..................73
(一) 18S 基因作為基因表現量分析之 Internal control.......73
(二) 高鹽環境與 DhSSA 基因之表現量.............74
(三) 高鹽環境與DhSSA 基因表現之調控.............74
六、 DhSSA 蛋白質表現量分析..................75
(一) 高鹽環境與 DhSSA 蛋白質之表現量.............75
(二) 高鹽環境與 DhSSA 蛋白質表現之時間............75
陸、 結論.............................78
參考文獻.............................79
附錄
附錄1. BD PCR-SelectTM cDNA Subtraction Kit .............85
附錄2. 由消減雜交技術 (subtractive hybridization) 之 DNA Library 中,增幅出
的 DhSSA之片段核酸序列分析圖譜..............89
附錄3. 由 GeneRacer 增幅出的 DhSSA 核酸序列經由 NCBI database 進行
BLAST 之分析結果.....................91
附錄4. D. hansenii、C. albicans 、S. pomb 、L. elongisporus與S. cerevisiae 之
SSA 核酸序列比對......................93
附錄5. D. hansenii、C. albicans 、S. pomb 、L. elongisporus與S. cerevisiae 之
SSA胺基酸序列比對.....................101
附錄6. SDS-PAGE 溶液與膠體配製.................104
附錄7. 培養基配方........................106
附錄8. 使用到之載體.......................109
附錄9. DhSSA/pMETB 質體核酸序列圖譜..............111





圖次
頁數
圖 1. HSP70 的 ATPase domain 與 substrate binding domain........9
圖2. 2A. 消減雜交技術法增幅之 cDNA library 結果...........49
2B. 限制酶確認 DhSSA/pGEMR-T Easy 質體
圖3. DhSSA 核酸序列進行 NCBI database 比對結果...........50
圖4. 4A. RACE 5’端DhSSA 片段基因之結果..............51
4B. RACE 3’端DhSSA 片段基因之結果
圖5. RACE 5’端DhSSA 片段基因之核酸序列..............52
圖6. RACE 3’端DhSSA 片段基因之核酸序列..............53
圖7. DhSSA 序列全長........................54
圖8. DhSSA核酸與胺基酸序列....................55
圖9. 南方墨點轉漬印法確認DhSSA 基因之拷貝數...........56
圖10. 反轉錄聚合酶連鎖反應 (RT-PCR) 分析DhSSA基因表現量....57
圖11. Real-time PCR相對定量分析DhSSA基因表現量.........58
圖12. 11A. Real-time PCR相對定量 Internal control 18S 之擴增曲線...59
11B. Real time PCR相對定量 DhSSA之擴增曲線
圖13. 西方墨點轉漬法分析DhSSA蛋白質表現量...........60
圖14. 14A. RT-PCR合成具 EcoRⅠ及 BamHⅠ切位之 DhSSA 基因...61
14B. 限制酶確認 DhSSA/pGEMR-T Easy 質體
14C. 限制酶確認 DhSSA/pMETB 表現質體
圖 15. 15 A-C. 螢光顯微鏡觀察轉染 DhSSA/ pMETB 表現質體......62
15 D. 共軛焦顯微鏡觀察 D. hansenii 細胞內 HSP70s 之表現
15 E. 螢光顯微鏡觀察未轉染 DhSSA/ pMETB表現質體之對照組
圖 16. 16 A. 共軛焦顯微鏡觀察轉染表現DhSSA/ pMETB質體......64
16 B. 共軛焦顯微鏡觀察未轉染 DhSSA/ pMETB表現質體之對照組
16C. 共軛焦顯微鏡觀察轉染 DhSSA/ pMETB表現質體

Ahn J. H., Y. G. Ko, W. Y. Park, Y. S. Kang, H. Y. Chung, and J. S. Seo. 1999. Suppression of ceramide-mediated apoptosis by HSP70. Mol Cells. 9(2):200-6.

Bates E. E., P. Vergne, and C. Dumas. 1994. Analysis of the cytosolic hsp70 gene family in Zea mays. Plant Mol Biol. 25(5):909-16.

Baumann F., I. Milisav, W. Neupert, and J. M. Herrmann. 2000. Ecm10, a novel hsp70 homolog in the mitochondrial matrix of the yeast Saccharomyces cerevisiae. FEBS Lett. 487(2):307-12.

Baxter B. K., and E. A. Craig. 1998. Suppression of an Hsp70 Mutant Phenotype in Saccharomyces cerevisiae through Loss of function of the Chromatin Component Sin1p/Spt2p. J. Bacteriol. 180(24):6484-92.

Becker J., and E. A. Craig. 1994. Heat-shock proteins as molecular chaperones. Eur J Biochem. 219(1-2):11-23.

Cai Q., J. D. Ferraris, and M. B. Burg. 2004. Greater tolerance of renal medullary cells for a slow increase in osmolality is associated with enhanced expression of HSP70 and other osmoprotective genes. Am J Physiol Renal Physiol. 286(1):F58-67.

Flaherty K. M. , C. DeLuca-Flaherty, and D. B. McKay DB. 1990. Three-dimensional structure of the ATPase fragment of a 70K heat shock cognate protein. Nature 346(6285): 623-8.

Fraser K. R., and C. P. O'Byrne. 2002. Osmoprotection by carnitine in a Listeria monocytogenes mutant lacking the OpuC transporter: evidence for a low affinity carnitine uptake system. FEMS Microbiol Lett. 211(2):189-94.

Futamura N., N. Ishiiminami, N. Hayashida, and K. Shinohara. 1999. Expression of DnaJ homologs and Hsp70 in the Japanese willow (Salix gilgiana Seemen). Plant Cell Physiol. 40(5):524-31.

Garrido C., M. Brunet, C. Didelot, Y. Zermati, E. Schmitt, and G. Kroemer. 2006. Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle. 5(22):2592-601.
Gavin A. C., M. Bösche, R. Krause, P, Grandi, M. Marzioch, A. Bauer, J. Schultz, J. M. Rick, A. M. Michon, C. M. Cruciat, M. Remor, C. Höfert, M. Schelder, M. Brajenovic, H. Ruffner, A. Merino, K. Klein, M. Hudak, D. Dickson, T. Rudi, V. Gnau, A. Bauch, S. Bastuck, B. Huhse, C. Leutwein, M. A. Heurtier, R. R. Copley, A. Edelmann, E. Querfurth, V. Rybin, G. Drewes, M. Raida, T. Bouwmeester, P. Bork, B. Seraphin, B. Kuster, G. Neubauer, and G. Superti-Furga. 2002. Functional organization of the yeast proteome by systematic analysis of protein complexes. Narure. 415(6868):123-4.
Glover J. R., S. Lindquist. 1998. Hsp104, Hsp70 and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell. 94(1):73-82.

Gori K, M. Hebraud, C. Chambon, H. D. Mortensen, N. Arneborg, and L. Jespersen . 2007. Proteomic changes in Debaryomyces hansenii upon exposure to NaCl stress. FEMS Yeast Res. 7(2):293-303.

Hainzl O., H. Wegele, K. Richter, and J. Buchner. 2004. Cns1 is an activator of the Ssa1 ATPase activity. J Biol Chem. 279(22):23267-73.

Hatayama T., S. Fujimoto, and K. Sakai. 1997. Effects of hyperosmotic NaCl and glycerol stress on stress response of human HeLa cells. Biol Pharm Bull. 20(6):605-12.

Henics T., E. Nagy, H. J. Oh, P. Csermely, A. von Gabain, and J. R. Subjeck. 1999. Mammalian Hsp70 and Hsp110 proteins bind to RNA motifs involved in mRNA stability. J Biol Chem. 274(24):17318-24.

Houry Wa. 2001. Chaperone-assisted protein folding in the cell cytoplasm. Curr Protein Pept Sci. 2(3):227-44.

Imai J., and I. Yahara. 2000. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. Mol Cell Biol. 20(24):9262-70.


Insall R. H. 1996. Cyclic GMP and the big squeeze. Osmoregulation.Curr Biol. 6(5):516-8. Review.

Jones G, Y. Song, S. Chung, and D. C. Masison. 2004. Propagation of Saccharomyces cerevisiae〔PSI+〕prion is impaired by factors that regulate Hsp70 substrate binding. Mol Cell Biol. 24(9):3928-37.

Kaufman R. J. 1999. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Gene Dev. 13(10):1211-33.

Kiang J. G., and G. C. Tsokos. 1998. Heat shock protein 70 kDa: molecular biology, biochemistry, and physiology. Pharmacol Ther. 80(2):183-201.

Kilstrup M., S. Jacobsen, K. Hammer, and F. K, Vogensen. 1997. Induction of heat shock proteins DnaK, GroEL, and GroES by salt stress in Lactococcus lactis. Appl Environ Microbiol. 63(5):1826-37.

Lan C., H. C. Lee, S. Tang, and L. Zhang. 2004. A novel mode of chaperone action: heme activatrion of Hap1 by enhanced association of Hsp90 with the repressed Hsp70-Hap1 complex. J Biol Chem. 279(26):27607-12.

Lee G. J., E. Vierling. 2000. A small heat shock protein cooperates with heat shock protein 70systems to reactivate a heat-denatured protein. Plant Physiol. 122(1):189-98.

Lee J. S., J. J. Lee, and J. S. Seo. 2005. HSP70 deficiency results in activation of c-Jun N-terminal Kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem. 280(8):6634-41.

Lee J. S., and J. S. Seo. 2002. Differential expression of two stress-inducible hsp70 genes by various stressors. Exp Mol Med. 34(2):131-6.

Li X. S., J. N. Sun, K. Okamoto-Shibayama, and M. Edgerton. 2006. Candida albicans cell wall ssa proteins bind and facilitate import of salivary histain 5 required for toxicity. J Biol Chem. 281(32):22453-63.
Liu D., X. Zhang, Y. Cheng, T. Takano, and S. Liu. 2006. rHsp90 gene expression in response to several environmental stresses in rice. Plant Physiol Biochem. 44(5-6):380-6.
Liu Q., J. Krzewska, K. Liberek, and E. A. Craig. 2001. Mitochondrial Hsp70 Ssc1: role in protein folding. J Biol Chem. 276(9):6112-8.
Maneu V., P. Roig, and D. Gozalbo. 2000. Complementation of Saccharomyces cerevisiae mutations in genes involved in translation and protein folding (EFB1 and SSB1) with Candida albicans cloned genes. Res Microbiol. 151(9):739-46.

Matsumoto R., R. Rakwal, G. K. Agrawal , Y. H. Jung, N. S. Jwa, M. Yonekura, H. Iwahashi, and K. Akama. 2006. Search for novel stress-responsive protein components using a yeast mutant lacking two cytosolic Hsp70 genes, SSA1 and SSA2. Mol Cells. 21(3):381-8.

Mayer M. P., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 62(6):670-84. Review.

McClellan A. J., J. L. Brodsky. 2000. Mutation of the ATP-binding pocket of SSA1 indicates that a functional interaction between Ssa1p and Ydj1p is required for post-translational translocation into the yeast endoplasmic reticulum. Genetics. 156(2):501-12.

Miao B., J. E. Davis, and E. A. Craig. 1997. Mge1 functions as a nucleotide release factor for Ssc1, a mitochondrial Hsp70 of Saccharomyces cerevisiae. J Mol Biol. 165(5):541-52.

Ngosuwan J., N. M. Wang, K. L. Fung, and W. J. Chirico. 2003. Roles of cytosolic Hsp70 and Hsp40 molecular chaperones in post-translational translocation of presecretory proteins into the endoplasmic reticulum. J Biol chem. 278(9):7034-42.

Niu P., L. Liu, Z. Gong, H. Tan, F. Wang, J. Yuan, Y. Feng, Q. Wei, R. M. Tanguay, and T. Wu. 2006. Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in dose-dependent manner. Cell Stress Chaperones. 11(2):162-9.

Park S. H., N. Bolender, F. Eisele, Z. Kostova, J. Takeuchi , P. Coffino, and D. H. Wolf. 2007. The cytoplasmic Hsp70 chaperone machinery subjects misfolded and endoplasmic reticulum import-incompetent proteins to degradation via the ubiquitin-proteasome system. Mol Biol Cell. 18(1):153-65.

Perkins S. J., K. F. Smith, S. C. Williams, P. I. Haris, D. Chapman, and R. B. Sim. 1994. The secondary structure of the von Willebrand factor type A domain in factor B of human complement by Fourier transform infrared spectroscopy. Its occurrence in collagen types VI, VII, XII and XIV, the integrins and other proteins by averaged structure predictions. J. Mol. Biol. 238(1): 104-119.
Quan X., P. Tsoulos, A. Kuritzky, R. Zhang, and U. Stochaj. 2006. The carrier Msn5p/Kap142p promotes nuclear export of the hsp70 Ssa4p and relocates in response to stress. Mol Microbiol. 62(2):592-609.

Ribeil J. A., Y. Zermati, J. Vandekerckhove, S. Cathelin, J. Kersual, M. Dussiot, S. Coulon, I. C. Moura, A. Zeuner, T. Kirkegaard-Sorensen, B. Varet, E. Solary, C. Garrido, and O. Hermine. 2007. Hsp70 regulates erythropoiesis by preventing caspase-3-mediated cleavage of GATA-1. Nature. 445(7123):102-5.

Satyanarayana C., S. Schroder-Kohne, E. A. Craig, P. V. Schu, and M. Horst. 2000. Cytosolic Hsp70s are involved in the transport of aminopeptidase 1 from the cytoplasm into the vacuole. FEBS Lett. 470(3):232-8.

Scheufler C., A. Brinker, G. Bourenkov, S. Pegoraro, L. Moroder, H. Bartunik, F. U. Hartl, and I Moarefi. 2000. Structure of TPR domain-peptide complexes: critical elements in the assembly of the Hsp70-Hsp90 multichaperone machine.
Cell. 101(2):199-210.

Schmidt S., A. Strub, K. Rottgers, N. Zufall, and W. Voos. 2001. The two mitochondrial heat shock proteins 70, Ssc1 and Ssq1, compete for the cochaperone Mge1. J Mol Biol. 313(1):13-26.

Shim E. H., J. I. Kim, E. S. Bang, J. S. Heo, J. S. Lee, E. Y. Kim, J. E. Lee, W. Y. Park, S. H. Kim, H. S. Kim, O. Smithies, J. J. Jang, D. I. Jin, and J. S. Seo. 2002. Targeted disruption of hsp70.1 sensitizes to osmotic stress.EMBO Rep. 3(9):857-61.

Serrano R., and A. I. Rodriguez-Navarro. 2001. Ion homeostasis during salt stress in plants. Curr Opin Cell Biol. 13(4):399-404.

Shulga N., P. James, E. A. Craig, and D. S. Goldfarb. 1999. A nuclear export signal prevents Saccharomyces cerevisiae Hsp70 Ssb1p from stimulating nuclear localization signal-directed nuclear transport. J Biol Chem. 274(23):16501-7.

Sugino M., T. Hibino, Y. Tanaka, N. Nii, and T. Takabe. 1999. Ovexpression of DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Sicence. 137:81-8.
Sung D. Y., F. Kaplan, and C. L. Guy. 2001. Plant Hsp70 molecular chaperones: Protein structure, gene family, expression and function. Physiol Plant. 113:443-51.

Tavaria M., T. Gabriele, I. Kola, and R. L. Anderson.1996. A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones. 1(1):23-8.

Thomas K. C., S. H. Hynes, and W. M. Ingledew. 1994. Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol. 60(5):1519-24.

Tutar Y., Y. Song, and D. C. Masison. 2006. Primate chaperones Hsc70 (constitutive) and Hsp70 (induced) differ functionally in supporting growth and prion propagation in Saccharomyces cerevisiae. Genetics. 172(2):851-61.

Unno K., T. Kishido, M. Hosaka, and S. Okada. 1997. Role of Hsp70 subfamily, Ssa, in protein folding in yeast cells, seen in luciferase-transformed ssa mutants. Biol Pharm Bull. 20(12):1240-4.

Wang W., B. Vinocur, O. Shoseyov, and A. Altman. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9(5):244-52.

Yam A. Y., V. Albanese, H. T. Lin, and J. Frydman. 2005. Hsp110 cooperates with different cytosolic HSP70 systems in a pathway for de novo folding. J Biol Chem. 280(50):41252-61.

Zhang S., M. Hacham, J. Panepinto, G. Hu, S. Shin, X. Zhu, P. R. Williamson. 2006. The Hsp70 member, Ssa1, acts as a DNA-binding transcriptional co-activator of laccase in Cryptococcus neoformans. Mol Microbiol. 62(4):1090-101.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔