(3.238.7.202) 您好!臺灣時間:2021/02/25 10:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李佑青
研究生(外文):Yu-Ching, Lee
論文名稱:文蛤 ( Meretrix lusoria ) 組織中無氧終產物累積的研究
論文名稱(外文):The study on the accumulation of anaerobic end products in various tissues of hard clam (Meretrix lusoria)
指導教授:李安進老師
指導教授(外文):An-Chin, Lee
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:水生生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:96
語文別:中文
中文關鍵詞:文蛤無氧代謝琥珀酸丙胺酸丙酸
外文關鍵詞:Hard clamsAnaerobic metabolismSuccinateAlaninePropionate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:605
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
文蛤 (Meretrix lusoria) 為台灣重要的經濟貝類,而且為底棲生物。在高溫的季節裡,容易面臨缺氧的環境,雖然文蛤具有無氧代謝的能力,然而缺氧環境有利兼性厭氧菌的滋生,顯著地降低文蛤的厭氧活存時間,因此本研究主要的目的乃在建立文蛤缺氧緊迫的指標。本研究將探討文蛤經無氧處理後,體液和各組織 (消化腺、鰓、斧足、閉殼肌、內側外套膜和外緣外套膜) 中無氧終產物 (琥珀酸、丙胺酸、丙酸) 含量的變化,並探討文蛤經無氧處理後,再移入有氧環境下體液和各組織中無氧終產物的恢復速率。
文蛤在25℃經無氧處理63小時後,體液和各組織中的無氧終產物皆隨無氧時間的延長而增加。琥珀酸 (succinate) 在體液和各組織中的累積量,以在體液中為最高,達50.3 μmol/ml;在鰓和消化腺中的累積次之,分別達20.4和26.9 μmol/g wet weight。丙胺酸 (alanine) 在體液和各組織中的累積量,以斧足的累積量為最多,達18.3 μmol/g wet weight;以體液的累積量為最少,達0.4 μmol/ml。丙酸 (propionate) 在體液和各組織中的累積量,則以在體液和鰓中為最高,分別達 8.7 μmol/ml 和5.2 μmol/g wet weight;在其餘組織中的累積量約在3 μmol/g wet weight 左右。
文蛤經無氧處理後,體液和各組織中琥珀酸的累積速率,以體液為最快,達1 μmol/ml/h,而其餘組織中的累積速率約為0.2 μmol/g wet weight/h;體液和各組織中丙胺酸的累積速率,則以消化腺、斧足、閉殼肌和內側外套膜較快,約為0.15 - 0.18 μmol/g wet weight/h;而體液和各組織中丙酸的累積速率,則以在體液中為最快,為0.22 μmol/ml/h。
文蛤經無氧處理63小時後,再移入有氧的環境下8小時,體液和各組織中無氧終產物的含量皆快速地下降。在體液和各組織中琥珀酸的恢復速率,以在體液中為最快,達2.8 μmol/ml/h,然而以在斧足中的恢復速率為最慢,達0.6 μmol/g wet weight/h,並且發現消化腺-內側外套膜、體液-閉殼肌和鰓-斧足-外緣外套膜的琥珀酸含量恢復至與控制組相當的時間,分別為8小時、24小時和48小時。在體液和各組織中丙胺酸的恢復速率,以在斧足中為最快,達1.2 μmol/g wet weight/h,並且發現消化腺、鰓、斧足和外緣外套膜的丙胺酸含量恢復至與控制組相當的時間為8小時。
將組織靜置冰上的實驗中發現,鰓組織中琥珀酸的含量最不穩定,而斧足中丙胺酸的含量最穩定,顯示檢測斧足的丙胺酸不須利用液態氮作快速冷凍處理,然而檢測鰓的琥珀酸則需要以液態氮作快速冷凍處理。
綜合以上所述,文蛤斧足中的丙胺酸,體液、消化腺和鰓中琥珀酸的累積量可作為文蛤缺氧緊迫指標的對象。

目錄

中文摘要 i
英文摘要 iii
第一章 前言
一、本研究的動機與目的 .................1
二、文蛤的簡介 .........................2
三、二枚貝體液和各組織的生理功能 .......2
四、造成二枚貝缺氧的因子 .............. 4
五、貝類抵抗無氧環境的策略 ............ 6
六、文蛤在缺氧環境下的存活 ............ 10
第二章 材料與方法
一、材料
(一) 實驗動物 ..................... 12
(二) 人工海水的配製 ............... 12
(三) 器材及藥品 ................... 12
二、方法
(一) 實驗設計 ......................13
(二) 實驗步驟 .....................13
(三) 萃取方法及分析 ................14
第三章 結果
ㄧ、文蛤在無氧環境下,無氧終產物在體液和
各組織的含量以及其累積速率 ........ 18
二、文蛤經無氧處理63小時後,再移入有氧環
境下,無氧終產物在體液和各組織含量的
變化 ...............................24
三、靜置冰上對組織中無氧終產物含量的影響
....................................26
第四章 討論
ㄧ、文蛤在無氧環境下,無氧終產物在體液和
各組織的含量以及其累積速率..........27
二、文蛤經無氧處理63小時後,再移入有氧環
境下,各組織中無氧終產物含量的變化..34
三、靜置冰上對組織中無氧終產物含量的影響
....................................36
第五章 結論 ..................................37
參考文獻 .....................................38
表 ...........................................47
圖 ...........................................48

參考文獻

行政院農業委員會漁業署,2006。中華民國台灣地區漁業年報九十五年版。

巫文隆,1980。台灣重要食用雙枚貝類研究。貝類學報,7, 101-114。

何雲達,1988。文蛤底質調查與試驗。Bulletin of Taiwan fisheries
research institute, 45, 45-56。

何雲達,2001。文漁業輔導專刊 1,雲嘉地區主要魚貝類繁養殖技
術彙集:文蛤養殖。行政院農委會水產試驗所台西分所,pp 111-124。

李安進、李明貞、賴弘智,2002。文蛤出入水管開關因子之研究。中華生質能源學會會誌,21, 55-62。

李明貞,2005。文蛤無氧能量代謝的研究。國立嘉義大學水產生物
研究所碩士論文。

李龍雄,2004。水產養殖學 中冊。前程出版社,pp 218-233。

郭河,1964。台灣經濟貝類調查。中國農村復興聯合委員會特刊第三十八號,32-50。

梁凱莉、高惠娟,1997。普通生物化學。合記圖書出版社,pp 40。

黃守忠,1991。彰化潮間帶懸浮顆粒調查及實驗室文蛤 (Meretrix
lusoria) 能量收支研究。國立台灣大學漁業科學研究所碩士論文。

蔡英亞、張英、魏若飛,1979。貝類學概論,pp 59-70。

Ali, F. and Nakamura, K. 2000. Metabolic characteristics of the Japanese clam Ruditapes philippinarum (Adams & Reeve) during aerial exposure. Aquaculture Research 31, 157-165.

Bacchiocchi, S. and Principato, G. 2000. Mitochondrial contribution to metabolic changes in the digestive gland of Mytilus galloprovincialis during anaerobiosis. Journal of Experimental Zoology 286, 107-113.

Beutler, H.O. 1984. Succinate. In: Bergmeyer, H.U., Bergmeyer, J., Graβ1, M., (eds), Metabolites 2: Tri- and Dicarboxylic Acid, Purines, Pyrimidines and Derivatives, Coenzymes, Inorganic Compounds. Methods of Enzymatic Analysis. Volume VII, VCH publisher, New York 25-34.

Brodey, M.M. and Bishop, S.H. 1992. Malic enzyme from ribbed mussel (Modiolus demissus) gill tissue mitochondria. Comparative Biochemistry and Physiology 103B, 305-312.

Cheng, W., Liu, C.H., Cheng, S.Y. and Chen, J.C. 2004. Effect of dissolved oxygen on the acid-base balance and ion concentration of Taiwan abalone Haliotis diversicolor supertexta. Aquaculture 231, 573-586.

Chiou, T.K., Lin, J.F. and Shiau, C.Y. 1998. Changes in extractive components and glycogen in the edible meat of hard clam Meretrix lusoria during storage at different temperatures. Fisheries Science 64, 115-120.

Cima, F., Valeriomatozzo, M., Amarin, G. and Ballarin, L. 2000. Haemocytes of the clam Tapes philippinarum (Adams & Reeve, 1850): morphofunctional characterisation. Fish and Shellfish Immunology 10, 677-693.

Crenshaw, M.A. and Neff, J.M. 1969. Decalcification at the mantle-shell interface in Molluscs. American Zoologist 9, 881-885.

De Vooys, C.G.N. 1980. Anaerobic metabolism in sublittoral living Mytilus galloprovincialis Lam in the Mediterranean. II. Partial adaptation of pyruvate kinase and phosphoenolpyruvate carboxykinase. Comparative Biochemistry and Physiology 65B, 513-518.

De Zwaan, A. 1972. Pyruvate kinase in muscle extracts of the sea mussel Mytilus edulis L.. Comparative Biochemistry and Physiology 42B, 7-14.

De Zwaan, A. and Van Marrewijk, W.J.A. 1973. Anaerobic glucose degradation in the sea mussel Mytilus edulis L.. Comparative Biochemistry and Physiology 44B, 429-439.

De Zwaan, A., De Bont, A.M.T. and Hemelraad, J. 1983a. The role of phosphoenolpyruvate carboxykinase in the anaerobic metabolism of the sea mussel Mytilus edulis L.. Journal of Comparative Physiology 153B, 267-274.

De Zwaan, A., De Bont, A.M.T., Zurburg, W., Bayne, B.L. and Livingstone, D.R. 1983b. On the role of strombine formation in the energy metabolism of adductor muscle of a sessile bivalve. Journal of Comparative Physiology 149B, 557-563.

De Zwaan, A. and Putzer, V. 1985. Metabolic adaptations of intertidal invertebrates to environmental hypoxia (a comparison of environmental anoxia to exercise anoxia). Symposia of the Society for Experimental Biology 39, 33-62.

De Zwaan, A., Cortesi, P., Thillart, G.V.D., Roos, J. and Storey, K.B. 1991. Differential sensitivities to hypoxia by two anoxia-tolerant marine molluscs: A biochemical analysis. Marine Biology 111, 343-351.

De Zwaan, A., Isani, G., Cattani, O. and Cortesi, P. 1995a. Long-term anaerobic metabolism of erythrocytes of the arcid clam Scapharca inaequivalvis. Journal of Experimental Marine Biology and Ecology 187, 27-37.
De Zwaan, A., Cortes, P. and Cattan, O. 1995b. Resistance of bivalves to anoxia as a response to pollution-induced environmental stress. The Science of the Total Environment 171, 121-125.

De Zwaan, A., Babarroa, J.M.F., Monarib, M. and Cattanib, O. 2002. Anoxic survival potential of bivalves: (arte) facts. Comparative Biochemistry and Physiology 131A, 615-624.

Deaton, L., Derby, J., Subhedar, N. and Greenberg, M. 1989. Osmoregulation and salinity tolerance in two species of bivalve mollusc: Limnoperna fortunei and Mytilopsis leucophaeta. Journal of Experimental Marine Biology and Ecology 133, 67-79.

Ebberink, R.H.M. and De Zwaan, A. 1980. Control of glycolysis in the posterior adductor muscle of the sea mussel Mytilus edulis. Journal of Comparative Physiology 137B, 165-171.

Eberlee, J.C., Storey, J.M. and Storey, K.B. 1983. Anaerobiosis, recovery from anoxia, and the role of strombine and alanopine in the oyster Crassostrea virginica. Canadian Journal of Zoology 61, 2682-2687.

Gäde, G. 1980. The energy metabolism of the foot muscle of the jumping cockle, Cardium tuberculatum: sustained anoxia versus muscular activity. Journal of Comparative Physiology 137B, 177-182.

Gäde, G. 1983. Energy metabolism of arthropods and mollusks during environmental and functional anaerobiosis. The Journal of Experimental Zoology 228, 415-429.

Gäde, G. 1988. Energy metabolism during anoxia and recovery in shell adductor and foot muscle of the gastropod mollusc Haliotis lamellosa: formation of the novel anaerobic end product tauropine. The Biological Bulletin 175, 122-131.

Gäde, G. and Wilps, H. 1975. Glycogen degradation and end products of anaerobic metabolism in the fresh water bivalve Anodonta cygnea. Journal of Comparative Physiology 104, 79-85.

Georg, M.H. and Gäde, G. 1987. Recovery from environmental anaerobiosis and muscular work in the cockle, Cardium tuberculatum: oxygen debt and metabolic responses. The Journal of Experimental Zoology 242, 291-301.

Graβ1, M. and Supp, M. 1984. Determination with alanine aminotransferase and lactate dehydrogenase. In: Bergmeyer, H.U., Bergmeyer, J.,Graβ1, M. (eds.), Metabolites 3: Lipids, Amino Acids and Related Compounds. Methods of Enzymatic Analysis. Volume VIII, VCH publisher, New York 345-349.

Greenway, S.C. and Storey, K.B. 1999. The effect of prolonged anoxia on enzyme activities in oysters (Crassostrea virginica) at different seasons. Journal of Experimental Marine Biology and Ecology 242, 259-272.

Grieshaber, M.K., Hardewig, I., Kreutzer, U. and Pörtner, H.O. 1994. Physiological and metabolic responses to hypoxia in invertebrates. Reviews of Physiology, Biochemistry and Pharmacology 125, 43-147.

Habe, T. 1977. Systematics of mollusca in Japan: Bivalvia and Scaphopoda. Hokuryukan, Tokyo XIII, 372.

Hochachka, P.W. and Musrafa, T. 1972. Invertebrate facultative anaerobiosis. Science 178, 1056-1060.

Holopainen, J. and Penttinen, O.P. 1993. Normoxic and anoxic heat output of the freshwater bivalves Pisidium and Sphaerium. Oecologia 93, 215-223.

Huang, S.L., Lee, M.C., Chen, S.M. and Lee, A.C. 2007. The Acid-base balance of the hemolymph of the hard clam (Meretrix lusoria) is affected by aerial exposure and cellular hypoxia-inducing factors. Journal of the Fisheries Society of Taiwan 34, 177-185.

Isani, G., Cattani, O., Carpené, E., Tacconi, S. and Cortesi, P. 1989. Energy metabolism during anaerobiosis and recovery in the posterior adductor muscle of the bivalve Scapharca inaequivalvis (Bruguiere). Comparative Biochemistry and Physiology 93B, 193-200.

Isani, G., Cattani, O., Zurzolo, M., Pagnucco, C. and Cortesi, P. 1995. Energy metabolism of the mussel, Mytilus galloprovincialis, during long-term anoxia. Comparative Biochemistry and Physiology 110B, 103-113.

Jørgensen, C.B. 1981. Feeding and cleaning mechanisms in the suspension feeding bivalve Mytilus edulis. Marine Biology 65, 159-163.

Julian, D. and Arp, A.J. 1992. Sulfide permeability in the marine invertebrate Urechis caupo. Journal of Comparative Physiology 162B, 59-67.

Kluytmans, J., De Bont, A.M.T., Kruitwagen, E. and Ravestein, H. 1983. Anaerobic capacities and anaerobic energy production of some mediterranean bivalves. Comparative Biochemistry and Physiology 75B, 171-179.

Kluytmans, J.H., Graft, M.V., Janus, J. and Pieters, H. 1978. Production and excretion of volatile fatty acids in the sea mussel Mytilus edulis L.. Journal of Comparative Physiology 123B, 163-167.

Kluytmans, J.H., Veenhof, P.R. and De Zwaan, A. 1975. Anaerobic production of volatile fatty acids in the sea mussel Mytilus edulis L.. Journal of Comparative Physiology 104B, 71-78.

Laudien, J., Schiedek, D., Brey, T., Pörtner, H.O. and Arntz, W.E. 2002. Survivorship of juvenile surf clams Donax serra (Bivalvia, Donacidae) exposed to severe hypoxia and hydrogen sulphide. Journal of Experimental Marine Biology and Ecology 271, 9-23.

Lee, A.C., Lee, M.C., Chen, S.M. and Chin, T.S. 2005. Temperature, pH, Mg+2 and aerial exposure time affect the oxygen consumption of hard clam (Meretrix lusoria). Journal of the Fisheries Society of Taiwan 32, 301-309.

Lee, A.C., Lee, M.C., Lee, Y.H. and Lee, Y.C. 2007a. Candidates for a biochemical vital indicator in the hard clam, Meretrix lusoria. Aquaculture (revised).

Lee, A.C., Lin, Y.H., Lin, C.R., Lee, M.C. and Chen, Y.P. 2007b. Effects of components in seawater on the digging behavior of the hard clam (Meretrix lusoria). Aquaculture 272, 636-643.

Livingstone, D.R. 1983. Invertebrate and vertebrate pathways of anaerobic metabolism: evolutionary considerations. Journal of the Geological Society 140, 27-37.

Livingstone, D.R. 1991. Origins and evolution of pathways of anaerobic metabolism in the animal Kingdom. American Zoologist 31, 522-534.

Livingstone, D.R. and Bayne, B.L. 1977. Responses of Mytilus edulis L. to low oxygen tension: anaerobic metabolism of the posterior adductor muscle and mantle tissues. Comparative Biochemistry and Physiology 114B, 143-155.

Michaelidis, B., Haas, D. and Grieshaber, M.K. 2005. Extracellular and intracellular acid-base status with regard to the energy metabolism in the oyster Crassostrea gigas during exposure to air. Physiological and Biochemical Zoology 78, 373-383.

Nicchitta, C.V. and Ellington, W.R. 1983. Energy Metabolism during air exposure and recovery in the high intertidal bivalve mollusc Geukensia demissa granosissima and the subtidal bivalve mollusc Modiolus sqamosus. The Biological Bulletin 165, 708-722.

Oeschger, R. 1990. Long-term anaerobiosis in sublittoral marine invertebrates from the western Baltic Sea: Halicryptus spinulosus (Priapulida), Astarte borealis and Arctica islandica (Bivalvia). Marine Ecology Progress Series 59, 133-143.

Ortmann, C. and Grieshaber, M.K. 2003. Energy metabolism and valve closure behaviour in the Asian clam Corbicula fluminea. The Journal of Experimental Biology 206, 4167-4178.

Pampanin, D.M., Ballarin, L., Carotenuto, L. and Marin, M.G. 2002. Air exposure and functionality of Chamelea gallina haemocytes: effects on haematocrit, adhesion, phagocytosis and enzyme contents. Comparative Biochemistry and Physiology 131A, 605-614.

Paynter, K.T., Karam, G.A., Ellis, L.L. and Bishop, S.H. 1985. Subcellular distribution of aminotransferases, and pyruvate branch point enzymes in gill tissue from four bivalves. Comparative Biochemistry and Physiology 82B, 129-132.

Shumway, S.E. 1985. Particle selection, ingestion, and absorption in filter-feeding bivalves. Journal of Experimental Marine Biology and Ecology 91, 77-92.

Simpfendörfer, R.W., Vial, M.V. and López, D.A. 1995. Relationship between the aerobic and anaerobic metabolic capacities and the vertical distribution of three intertidal sessile invertebrates: Jehlius cirratus (Darwin) (Cirripedia), Perumytilus purpuratus (Lamarck) (Bivalvia) and Mytilus chilensis (Hupe) (Bivalvia). Comparative Biochemistry and Physiology 111B, 615-623.

Tabor, H. 1981. Solar ponds. Solar Energy 27, 181-194.

Turton, J.A., Havard, A.C., Robinson, S., Holt, D.E., Andrews, C.M., Fagg, R. and Williams, T.C. 2000. An assessment of chloramphenicol and thiamphenicol in the induction of aplastic anaemia in the BALB/c mouse Food and Chemical Toxicology 38, 925-938.

Van Den Thillart, G. and De Vries, I. 1985. Excretion of volatile fatty acids by anoxic Mytilus edulis and Anodonta cygnea. Comparative Biochemistry and Physiology 80B, 299-301.

Van Den Thillart, G., Van Lieshout, G., Storey, K., Cortesi, P. and De Zwaan, A. 1992. Influence of long-term hypoxia on the energy metabolism of the haemoglobin-containing bivalve Scapharca inaequivalvis: critical O2 levels for metabolic depression. Comparative Biochemistry and Physiology 162B, 297-304.

Wang, W.X. and Widdows, J. 1993. Metabolic responses of the common mussel Mytilus edulis to hypoxia and anoxia. Marine Ecology Progress Series 95, 205-214.

Wijsman, Y.C.M. 1976. Adenosine phosphates and energy charge in different tissues of Mytilus edulis L. under aerobic and anaerobic conditions. Journal of Comparative Physiology 107B, 129-140.

Zammit, V.A. and Newsholme, E.A. 1978. Properties of pyruvate kinase and phosphoenolpyruvate carboxykinase in relation to the direction and regulation of phosphoenolpyruvate metabolism in muscles of the frog and marine invertebrates. The Biochemical Journal 174, 979-987.

Zurburg, W. and Ebberink, R.H.M. 1981. The anaerobic energy demand of Mytilus edulis. Organ specific differences in ATP-supplying processes and metabolic routes. Molecular Physiology 1, 153-164.

Zurburg, W. and Kluytmans, J.H. 1980. Organ specific changes in energy metabolism due to anaerobiosis in the sea mussel Mytilus edulis L.. Comparative Biochemistry and Physiology 67B, 317-322.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔