跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳昭壹
研究生(外文):Jhao-Yi Chen
論文名稱:時間軸三次內插特性法端點效應之探討
論文名稱(外文):Examination of effect of endpoint constraint on characteristics method with time-line cubic spline interpolation
指導教授:蔡東霖蔡東霖引用關係
指導教授(外文):Tung-Lin Tsai
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:土木與水資源工程學系研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:70
中文關鍵詞:特性法三次內插時間軸內插端點限制
外文關鍵詞:characteristics methodcubic splinetime-line interpolationendpoint constraints
相關次數:
  • 被引用被引用:2
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:31
  • 收藏至我的研究室書目清單書目收藏:0
當庫倫數(Courant Number)接近或大於1時,時間軸cubic spline內插法產生極大的計算誤差,這可能是使用自然端點限制之結果。本研究進行不同端點限制與特性線外延技巧對時間軸cubic spline內插特性法之影響分析,探討最佳的端點處理方法。結果顯示,非結點端點限制會造成計算不穩定,自然與二次函數端點限制,分別產生嚴重的數值擴散與數值震盪。一階導數與二階導數端點限制有相近之模擬結果,且優於自然與二次函數端點限制,但與特性線外延技巧相比較,卻有較大的均方根誤差,且產生某種程度之數值擴散與數值震盪。由此可知,端點限制嚴重影響時間軸cubic spline內插特性法之模擬結果。藉由特性線外延技巧使特性線之落點遠離端點,可以有效降低端點限制之影響。因此,時間軸cubic spline內插特性法,需配合特性線外延技巧以減少計算誤差。
The characteristics method with time-line cubic spline interpolation induces large computational error when the Courant number is close or greater than the unity. This may be due to the use of natural endpoint constraint. To find suitable treatment of endpoint this study examines the effects of various endpoint constraints and reachout technique on the characteristics method with time-line cubic spline interpolation. The results show that the not-a-knot induces computational instability when the Courant number is greater than the unity. The natural and the quadratic endpoint constraints produce large numerical diffusion and numerical oscillation, respectively. The first derivative and the second derivative endpoint constraints have similar results and are superior to the natural and the quadratic endpoint constraints. However, the reachout technique has less root mean square error than the first derivative and the second derivative endpoint constraints which induce a certain degree of numerical diffusion and numerical oscillation. This outcome indicates that the characteristics method with time-line cubic spline interpolation is largely influenced by the endpoint constraint. When the location of characteristics curve is away from the endpoint the effects of endpoint constraint can be efficiently avoided by using the reachout technique. Therefore, the reachout technique needs to be adopted to reduce the computational error from the characteristics method with time-line cubic spline interpolation.
摘要……………………………………………………………………i
Abstract………………………………………………………………ii
誌 謝…………………………………………………………………iii
目 錄…………………………………………………………………iv
表目錄…………………………………………………………………vi
圖目錄…………………………………………………………………viii
符號說明…………………………………………………………………x
第一章緒論………………………………………………………………1
1.1研究動機與目的……………………………………………1
1.2文獻回顧……………………………………………………2
1.3研究方法與步驟……………………………………………3
1.4章節介紹……………………………………………………4
第二章三次內插特性法簡介……………………………………………5
2.1特性法簡介…………………………………………………5
2.2cubic spline內插法………………………………………6
2.3時間軸cubic spline內插特性法…………………………7
第三章時間軸三次內插特性法之評估…………………………………9
3.1端點限制之評估……………………………………………9
3.2特性線外延技巧之評估……………………………………14
3.3端點限制與特性線外延技巧之綜合評估…………………16
第四章時間軸三次內插特性法之應用…………………………………18
4.1變係數移流擴散方程式之計算……………………………18
4.2Burgers 方程式之計算……………………………………19
4.3運動波漫地流之計算………………………………………20
第五章結論與建議………………………………………………………22
5.1結論…………………………………………………………22
5.2建議…………………………………………………………23
參考文獻…………………………………………………………………24
附 錄…………………………………………………………………70

1.Ahmad, Z. and Kothyari, U.C. (2001). “Time-line cubic spline interpolation scheme for solution of advection equation.” Computers &; Fluids, Vol. 30, pp. 737-752.

2.Bedient, P.B. and Huber, W.C. (1992). Hydrology and Floodplain Analysis, Addison-Wesley publish company.

3.Bravo, H. R. (1997). “Modeling Do conditions in streams using Lagrangian advection method. “Journal of Hydraulic Research, Vol. 35, No 5, pp. 643-657.

4.DeBoor, C. (1978). A practical guide to spline. Springer-Verlag, New York.

5.Gerald, C.F., and Wheatley, P.O. (1999). Applied numerical analysis. Addison-Wesley publish company, 6th ed., pp. 238-245.

6.Holly, F.M. Jr. and Preissmann, A. (1977). “Accurate calculation of transport in two dimensions.” Journal of Hydraulic Engineering, ASCE, Vol. 103(HY11), pp. 1259-1277.

7.Karpik, S.R., and Crockett, S.R. (1997). “Semi-Langrangian” algorithm for two-dimensional advection-diffusion equation on curvilinear coordinate meshes.” Journal of Hydraulic Engineering, ASCE, Vol. 123, No.5, pp. 389-401.

8.Knott, G.D. (1999). Interpolating cubic splines. Birkhauser Boston, New York.

9.Lai, C. (1986). “Numerical modeling of unsteady open channel flow.” Advances in Hydroscience, V.T. Chow and B.C. Yen, eds,. Vol. 14, Academic Press, Orlando,Fla., pp. 161-333.

10.Lai, C. (1988). “Comprehensive method of characteristics models for flow simulation.” Journal of Hydraulic Engineering, ASCE, Vol. 114(HY9), pp. 1074-1097.

11.Lai, C. (1994). “Multicomponent-flow analyses by multimode method of characteristics.” Journal of Hydraulic Engineering, ASCE, Vol. 120, No.3, pp. 378-395.

12.Massau, J. (1889). “L’int&;eacute;gration graphique, and Appendice au m&;eacute;noire sur l’int&;eacute;gration graphique.” Assoc. des Ing&;eacute;nieurs sortis des Ecoles Sp&;eacute;ciales de Gand, Belgium, Annales, Vol. 12, pp. 185-444.

13.Ruan, F., and Mclaughlin, D. (1999). “An investigation of Eulerian-Lagrangian methods for solving heterogeneous advection-dominated transport problem.” Water Resource Research, vol. 35, pp. 2359-2373.

14.Salinas, S.V., Grieger, B., Markiewicz, W.I., and Keller, H.U. (2003). “A spherical model for computing polarized radiation in Titan’s atmosphere.” Planetary and Space Science, vol. 51, pp. 977-989.

15.Schohl, G.A., and Holly, F.M. Jr. (1991). “Cubic-spline interpolation in Lagrangian advection computation.” Journal of Hydraulic Engineering, ASCE, Vol. 117, pp. 248-253.

16.Singh, V.P. (1996). Kinematic wave modeling in water resource: surface-water hydrology, Wiley, New York.

17.Stefanovic, D. L. and Stefan, H. G.. (2001). “Accurate two-dimensional simulation of advection-diffusion-reactive transport.” Journal of Hydraulic Engineering, ASCE, Vol. 127, pp. 728-737.

18.Tsai, T.L., Yang, J.C., and Huang, L.H. (2002). “Hybrid finite-difference scheme for advection-diffusion equation.” Journal of Hydraulic Engineering, ASCE, vol. 128, no. 1, pp. 78-86.

19.Tsai, T.L., Yang, J.C., and Huang, L.H. (2004). “Characteristics method using cubic-spline interpolation for advection-diffusion equation.” Journal of Hydraulic Engineering, ASCE, vol. 130, no. 6, pp. 580-585.

20.Tsai, T.L., Chiang, S.W. and Yang, J.C. (2004). “Characteristics method with cubic interpolation for open channel flow computation” International Journal for Numerical Method in Fluids, vol. 46, pp. 663-683.

21.Tsai, T.L. and Yang, J.C. (2005). “Kinematic wave modeling of overland flow using characteristics method with cubic-spline interpolation.” Advances in Water Resources, vol. 28, pp. 661-670.

22.Tsai, T.L., Chiang, S.W. and Yang, J.C. (2006). “Examination of characteristics method with cubic interpolation for advection-diffusion equation.” Computers and Fluid, vol. 35, pp. 1217-1227.

23.Vardy, A.E. (1977). “On the use of the method of characteristics for the solution of unsteady flows in networks.” Proceedings, 2nd International Conference on Pressure Surges, British Hydromech Res. Assoc., Fluid Engineering Cranfield England, H2, pp. 15-30.

24.Wiggert, D.C., and Sundquist. M.J. (1977). “Fixed-grid characteristics for pipeline transients.” Journal of Hydraulic Engineering, ASCE, Vol. 103(HY12), pp. 1403-1416.

25.Yang, J.C., and Wang, J.Y. (1988). “Numerical solution of dispersion equation in one dimension.” Journal of the Chinese Institute of Engineers, Vol. 11, no.4, pp. 379-383.

26.Yang, J.C., and Hsu E.L. (1990). “Time-line interpolation for solution of the dispersion equation.” Journal of Hydraulic Research, Vol. 28(4), pp. 503-520.

27.Yang, J.C., and Hsu E.L. (1991). “On the use of reachback characteristics method for calculation of dispersion.” International Journal for Numerical Methods in Fluids, Vol. 12, pp. 225-235.

28.Yang, J.C., Chen, K.N., and Lee, H.Y. (1991). “Investigation of use of reachback characteristics method for 2d dispersion equation.” International Journal for Numerical Methods in Fluids, Vol. 13, pp. 841-855.

29.Yang, J.C., Chen, K.N., and Lee, H.Y. (1992). “An accurate computation for rapidly varied flow in open channel.” International Journal for Numerical Methods in Fluids, Vol. 14, pp. 361-374.

30.Yang, J.C., and Chiu, K.P. (1993). “Use of characteristics method with cubic interpolation for unsteady-flow computation.” International Journal for Numerical Methods in Fluids, Vol. 16, pp. 329-345.

31.Zane, S., Turolla, R., and Treves, A. (1998). “Hot atmospheres around accreting neutron stars: A possible source for hard X-ray emission.” Astrophysical Journal, vol. 501, pp. 258-262.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top