跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/08 04:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳保成
研究生(外文):Bao-Cheng Chen
論文名稱:矽灰與纖維砂漿作為修補材料抗撞擊行為之探討
論文名稱(外文):Study on Impact Resistance Behavior of Silica Fume and Fiber Mortar Repairing Materials
指導教授:劉玉雯劉玉雯引用關係
指導教授(外文):Yu-Wen Liu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:土木與水資源工程學系研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:134
中文關鍵詞:混凝土修補撞擊鋼纖維碳纖維矽灰有限元素模型
外文關鍵詞:concreterepairing materialsimpactsteel-fibercarbon-fibersilica-fumeFinite Element Model
相關次數:
  • 被引用被引用:4
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  近年來混凝土結構物的補修與加固之相關研究,逐漸受到重視。本研究主要探討混凝土版之表層修補材料,對於撞擊作用的抵抗能力。試驗採用四種水膠比0.28之高強度水泥砂漿作為修補材料,包含純水泥砂漿、矽灰水泥砂漿、碳纖維水泥砂漿以及鋼纖維水泥砂漿等修補材料;同時進行一系列混凝土版的落重撞擊試驗,並以試體之終裂撞擊次數作為評估抗撞擊能力的指標。結果顯示,鋼纖維水泥砂漿在修補厚度3、6與9公分時,抗撞擊能力依次為對照組純水泥砂漿的1.0、1.9與1.6倍;碳纖維水泥砂漿者分別為對照組純水泥砂漿的1.0、0.9與1.5倍;矽灰水泥砂漿者依次為對照組純水泥砂漿的1.0、1.0與1.3倍。
  另一方面,對各組混凝土版受到撞擊作用的情形,進行動態3D顯含式有限元素模型的數值模擬分析。模擬結果顯示,各組混凝土版在修補層厚度3公分時,撞擊作用下拉應力集中區有接近黏結面的現象。而各組混凝土版在修補層厚度6、9公分時,基底層頂面所受到的最大等效應力分別減少為修補層厚度3公分者之63~71%、26~29%。在破壞模式方面,數值模擬的結果顯示,單次撞擊作用下,各組混凝土版在撞擊接觸面皆有塑性凹陷的破壞現象。而利用數值模擬的應力輪廓圖,可推測受到撞擊作用的混凝土版會有四種可能的破壞方式,分別為壓力破壞、剪力破壞、拉力破壞以及黏結面破壞等。最後利用模擬的結果與理論之假設與推導,建立終裂撞擊次數的預測模型。

  In recent years, related researches on the repairing materials for concrete structures have been emphasized gradually. This study is mainly explored the resistance capability of repairing materials to the impact effect on the surface layer of concrete slab. The experiment has adopted 4 types of high strength cement mortar with 0.28 water-cementitious ratio as the repairing material, which included the pure mortar, silica-fume mortar, carbon-fiber mortar and steel-fiber mortar; in the meantime, conducted a series of drop-weight impact experiment on the concrete repairing slab, and then regarded the impact frequency of final-breaking for the test specimen as the indicator to evaluate the capability of impact resistance. The test has result showed that when the repaired thicknesses of steel-fiber mortar at 3, 6 and 9 centimeters, its impact resistances were respectively 1.0, 1.9 and 1.6 times greater than the pure mortar (control group); moreover, 1.0, 0.9 and 1.5 times for the carbon-fiber mortar; and 1.0, 1.0 and 1.3 times for the silica-fume mortar.
  On the other hand, this study has applied the Dynamic 3D Explicit Finite Element Model to conduct the numerical simulation analysis on the impacted situation for each group’s repairing slab. The result of simulation has displayed that the tensile stress concentration area has tended to the bonding surface under impacting for each group’s repairing slab with a 3-centimeter repairing thickness. Moreover, when repairing thicknesses for each group’s concrete are 6 and 9 centimeters, the maximum equivalent stress that received on the top side of its base will then be reduced 63~71% and 26~29% respectively of the values for the 3-centimeter thickness of repairing layer. As for the failure model, the result of numerical simulation has showed that under the effect of single impacting, each group’s concrete has the failure phenomenon of plastic dent on the contact-surface of impact. In addition, the stress outline that obtained from using the numerical simulation can infer 4 possible methods of failure for the impacted concrete repairing slab, and they are compression failure, shear failure, tension failure and bonding surface failure. At last, this study has made use of the simulation result and deduction of theory to construct the prediction model for the impact frequency of final-breaking.

誌謝 Ⅰ
中文摘要 Ⅱ
Abstract Ⅲ
目錄 Ⅳ
表目錄 Ⅶ
圖目錄 Ⅷ
照片目錄 X
符號說明 XⅠ
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 3
2-1 混凝土結構物修補 3
2-1-1 混凝土結構物修補規定與原則 3
2-1-2 混凝土結構物修補材料 3
2-1-3 修補之黏結面的處理 4
2-2 撞擊作用 6
2-2-1 撞擊過程的應力行為 6
2-2-2 混凝土材料抗撞擊性 7
2-3 高性能混凝土 13
2-3-1 鋼纖維混凝土 14
2-3-2 碳纖維混凝土 15
2-4 數值模擬撞擊作用 17
2-4-1 ANSYS/DYNA軟體 17
2-4-2 混凝土彈性模數公式 18
第三章 試驗計畫與方法 23
3-1 試驗變數規劃 23
3-2 試驗材料 24
3-3 配比設計與試體製作 25
3-3-1 配比設計 25
3-3-2 試體製作 25
3-4 試驗設備與方法 27
第四章 試驗結果分析討論 37
4-1 材料基本力學性質 37
4-1-1 修補材料之抗壓強度 37
4-1-2 修補材料之抗拉強度 38
4-1-3 修補材料之抗彎強度 39
4-2 撞擊試驗結果與討論 40
4-2-1 不同修補厚度之抗撞擊能力 40
4-2-2 不同修補材料之抗撞擊能力 42
4-2-3 混凝土版撞擊破壞模式 43
第五章 數值模擬分析與結果討論 73
5-1 模擬撞擊行為的數值模型設定 73
5-1-1 參數決定與假設 73
5-1-2 有限元素法數值模型 74
5-2 模擬撞擊行為的數值分析結果與討論 79
5-2-1 從模擬的結果討論撞擊作用可能的破壞模式 79
5-2-2 從模擬的結果討論修補層厚度的影響 82
5-2-3 從模擬的結果討論材料差異的影響 87
5-3 數值模擬結果與試驗結果比較 89
5-3-1 試驗與數值模擬的撞擊破壞模式比較 89
5-3-2 試驗與數值模擬的撞擊終裂次數比較 90
第六章 結論與建議 121
6-1 結論 121
6-2 建議 123
參考文獻 125
附錄A 131

1. 混凝土工程施工規範與解說,中國土木水利工程學會,混凝土工程委員會,1999。
2. 林秉誼,混凝土劣化後基本性質及修補後破裂韌性之研究,碩士論文,私立朝陽科技大學,2003。
3. 趙志方、周厚貴、袁群、馬金剛,新老混凝土黏結機理研究與工程應用,中國水利水電出版社,2003。
4. Stronge WJ. Impact mechanics. Cambridge: Cambridge University Press, 2000.
5. S. Pashah*, M. Massenzio, E. Jacquelin “Prediction of structural response for low velocity impact”, International Journal of Impact Engineering, Vol. 35, pp. 119-132, 2008.
6. 厲娓娓,微鋼纖維水泥砂漿材料性質研究,碩士論文,國立台灣大學,1994。
7. 顏聰、劉玉雯等,耐撞擊磨耗之水工構造物表層材料研發完成報告,台灣電力公司專題研究報告,2003。
8. Velazco, G, Visalvanich, K., and Shah, S. P., “Fracture Behavior and Analysis of Fiber Reinforced Concrete Beams”, Cement and Concrete Research, Vol. 10, No. 1, pp. 41-51, 1980.
9. 宋佩瑄,纖維混凝土實務,現代營建雜誌社,台北,1991。
10. G. Ramakrishna *, T. Sundararajan, “Impact strength of a few natural fibre reinforced cement mortar slabs: a comparative study”, Cement &; Concrete Composites Vol. 27, pp. 547-553, 2005.

11. Balaguru PN, Shah SP, “Fibre-reinforced cement composites”, UK: McGraw Hill Inc, pp. 530, 1992.
12. Suaris, W., and Shah, S. P., “Test modulus for impact resistanse of fiber reinforced concrete”, Research report, U. S. Army Research Office, Dec., pp.247-263, 1981.
13. ACI Committee 544, State-of-the-Art Report on Fiber Reinforced Concrete, American Concrete Institute, 1996.
14. 中國國家標準CNS 9961,建築用板類衝擊試驗法,經濟部中央標準局。
15. Mindness, S., Banthia, N. and Benturt, A., “The response of reinforced concrete beams with a fiber concrete matrix to impact loading”, The International Journal of Cement Composites and Lightweight Concrete, Vol. 8, No. 3, pp. 165-170, 1986.
16. Mindness, S., Yan, C., Vondran, G., and Benturt, A., “Impact resistance of concrete containing both conventional steel reinforcement and fibrillated polypropylene fibers”, ACI Materials Journal, Nov.-Dec., pp. 545-549, 1989.
17. Banthia, N., Mindess, S., Bentur, A., and Pigeon, M., “Impact testing of concrete using a drop-weight impact machine”, Experimental Mechanics. pp. 63-69, March, 1989.
18. Manolis, G. D., Gareis, P. J., Tsonos, A. D., and Neal, J. A., “Dynamic properties of polypropylene fiber reinforced concrete slabs”, Cement and Composites, Vol. 19, pp. 341-349, 1997.
19. Ong, K. C. G., Basheerkhan, M., and Paramasivam, P., “Resistance of fiber concrete slabs to low velocity projectile impact”, Cement and Concrete Composites, Vol. 21, pp. 391-401, 1999.
20. Almansa, E. M., and Canovas, M. F., “Behavior of normal and steel fiber-reinforced concrete under impact of small projectiles”, Cement and Concrete Research, Vol. 29, pp. 1807-1814, 1999.
21. Bindihanavile, V., and Banthia, N., “Polymer and steel fiber reinforced cementitious composites under impact loading”, ACI Materials Journal, Jan-Feb., pp. 10-24, 2001.
22. Watstein, D., “Effect of straining rate on the compressive strength and elastic properties of concrete”, Journal of the American Concrete Institute, Vol. 24, No. 8, Apr. pp. 729-744, 1953.
23. Bischoff, P. H., and Perry, S. H., “Compressive behavior of concrete at high strain rate”, Materials and Structures, Vol. 24, pp. 425-450, 1991.
24. Zukas, J. A., Nicholas, T., Swift, H.F., Greszczuk, L., and Curran, D.R., Impact dynamics, John Wiley &; Sons, Inc. California, 1982.
25. Clifton, J. R., and Knab, L. I., “Impact testing of concrete”, Cement and concrete research, Vol. 14, pp. 541-548, 1983.
26. Reinhardt, H. W., Kormeling, H.A., and Zielinski, A.J., “The split Hop-kinson bar a versatile tool for the impact testing of concrete”, Materials and Constructions, Vol. 19, No. 109, pp. 55-63, 1986.
27. Roos, C. A., Tedesco, J. W., and Kuennen, S. T., “Effect of strain rate on concrete strength”, ACI Materials Journal. Jan-Feb., pp. 37-47, 1991.
28. 周承劉,纖維混凝土板在低速撞擊荷載下之貫穿阻抗研究,碩士論文,國防中正理工學院,2002。
29. 顏聰、張朝順等,電力設施之混凝土裂縫成因與防治對策研析,台灣電力公司,研究計畫601-4412,2005。
30. 宋佩瑄,“混凝土工程中如何選用適當的纖維材料”,纖維混凝土在工程上的應用與發展,第1-22 頁,1998。
31. 鄭富書、林銘郎,“鋼纖維噴凝土應用於隧道工程之發展、現況與展望”,纖維混凝土在工程上的應用與發展,第71-98 頁,1998。
32. 大谷杉郎、大谷朝男,碳纖維材料入門,復漢出版社,1983。
33. 賴森榮,纖維混凝土之發展與應用,台灣營建研究中心,台北,1983。
34. 宋佩瑄,碳纖維混凝土,現代營建,1989。
35. N. Banthia, “Carbon Fiber Cements: Structure, Performance, Applications and Research Needs, Fiber Reinforced Concrete Developments and Innovations”, American Concrete Institute, SP-142, pp. 91-120.
36. Abrate S., “Modeling of impacts on composite structures”, Compos Struct, Vol. 51, No. 2, pp. 129-138, 2001.
37. 王茂興,堰壩混凝土耐石塊撞擊之動力模擬分析,中興工程顧問社土木資訊研究中心,2004。
38. John O. Hallquist, Ls-Dyna3D Theoretical Manual, Livermore Software Technology Corporation, LSTC Report 1018 Rev.2, 1993.
39. 陳鍵智,高爾夫球桿揮擊動態系統分析,碩士論文,國立中山大學,2002。
40. 陳朝漟,高爾夫桿頭形狀變化之碰撞分析,碩士論文,國立中山大學,2003。
41. 混凝土工程設計規範與解說,中國土木水利工程學會,混凝土工程委員會,1999。
42. 曹國龍,高性能混凝土破裂性質之探討,碩士論文,國立台灣工業技術學院,1997。
43. Tsai, S. W. and Hahn, H. T., Introduction to Composite Materials, Technomic Publishing Co., Inc. Westport, 1980.
44. Ahmad, H. and Lagoudas, D. C., “Effective Elastic Properties of Fiber-Reinforced Concrete with Random Fibers”, Journal of Engineering Mechanics, Vol. 117, No. 12, pp. 2931-2939, 1991.
45. Christensen, R. M. and Waals, F. M., “Effective Stiffness of Randomly Oriented Fibre Composites”, Journal of Composite Materials, Vol. 6, pp. 518-535, 1972.
46. Tso-Liang Teng, Yi-An Chu, Fwu-An Chang, and Hua-Sheng Chin, “Application of the equivalent inclusion method on material strength”, C.C.I.T. Journal, Vol.33, No.1, 2004.
47. Mura, T., Micromechanics of Defects in Solids, 2nd Edition, Kluwer Academic Publishers, Netherlands, 1987.
48. Williamson, G. R., “The Effect of Steel Fibers on the Compressive Strength of Convrete”, Int. Symp. On Fiber Reinforced Concrete, American Concrete Institute, SP 44-11, pp. 195-207, 1974.
49. 李明山,橋樑橡膠支承墊非線性行為之數值模擬,碩士論文,國立中央大學,2005。
50. 林俊賢,纖維混凝土拉拔行為之界面應力分析,碩士論文,國立成功大學,2000。
51. 張孝全、呂政良、林千惠、蘇稚琳,“纖維在混凝土上的應用”,台灣人纖工業會訊,第十三卷,第四期,2000。
52. 王燕洳,矽灰混凝土抗沖磨性與微結構特性之探討,碩士論文,國立嘉義大學,2007。
53. Gere &; Timoshenko, Mechanics of Materials, 4th Edition, PWS Publishing Company, Boston, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top