(44.192.10.166) 您好!臺灣時間:2021/03/05 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃瓊慧
研究生(外文):Huang, Chiung-Hui
論文名稱:不同治療策略對於低血容性休克時通氣灌流失衡的影響
論文名稱(外文):The effect of treatment strategies on ventilation/ perfusion mismatch during hypovolemic shock
指導教授:黃坤崙黃坤崙引用關係
學位類別:碩士
校院名稱:國防醫學院
系所名稱:海底醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:83
中文關鍵詞:低血容性休克多重惰性氣體排除技術螢光微粒分析技術正腎上腺素全血輸注動脈氧分壓
相關次數:
  • 被引用被引用:0
  • 點閱點閱:342
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
低血容性休克產生的低灌流壓,導致傳送至組織的氧氣量不足代謝所需。生理代償下,經由增加氧氣供應量或組織氧氣抽取量,能增加動脈血氧含量,但是否改善肺部通氣和灌流分佈,仍屬未知。臨床上,全血輸注和正腎上腺素療法,皆可改善體循環血液動力學變化
;前者能提升血管內容積,而後者會增加血管阻力,兩者皆會影響系統血管阻力,推測在肺循環將會產生不同的反應,使肺血流產生重分布的現象,而影響肺內通氣灌流的分佈。
目的:探討低血容性休克時和給予全血輸注和正腎上腺素治療後,肺血管活動對通氣灌流分佈的影響。方法:本實驗採用體重2-3公斤、每組4-6隻的雄性紐西蘭大白兔,觀察血液動力學和肺部通氣灌流的分佈。於基礎值一小時後,給予抽血誘發休克直到動脈血壓降至50±5 mmHg,接著將動物隨機分成四組:(1)控制組,維持平躺姿勢直到實驗結束;(2)休克組,誘導休克後不給予任何治療;(3)全血輸注組,誘導休克後給予自體血液回補;(4)正腎上腺素組,誘導休克後給予正腎上腺素持續注射。利用多重惰性氣體排除技術觀察肺部通氣/灌流分佈,及螢光微粒分析技術觀察肺血流分佈狀態。使用免疫酵素聯結分析法測得血中乳酸濃度。結果:低血容性休克誘發後,引起平均動脈壓、心輸出量、系統血管阻力
、及肺動脈壓降低(p<0.05)。因此,高流量肺區的肺血流往低流量肺區分佈;同時灌流的平均值增加、通氣的標準差降低,加上肺內分流百分比降低,而提升動脈氧分壓(p<0.05)
。全血輸注療法能提升靜脈氧分壓(p<0.05)及降低乳酸含量,而正腎上腺素療法能增加心輸出量,兩者皆會影響血管容積的含量,降低肺內分流百分比(p<0.05)。結論:低血容性休克時動脈血氧濃度增高,可能與肺部通氣灌流分佈的同質性增加及分流減少有關。不同的復甦策略都能改善血液動力學變化,卻無法降低通氣灌流分佈失衡的變化。
Background: Hypovolemic shock leads to hypoperfusion, which causes inadequate oxygen delivery to tissues and requirement. Under the physiological compensation, the increase oxygen supply or tissues oxygen extraction, can increase the arterial blood oxygen content, but whether improved the pulmonary ventilation-perfusion distribution
, still is unknown. In clinical practice, the whole blood transfusion and Norepinephrine therapy improve the systemic hemodynamic change. The former elevated blood volume, the latter increases vascular resistance, both have that was influence the systemic vascular resistance, expected to have the different response in the pulmonary circulation. Both treatments may influence pulmonary ventilation-perfusion distribution and pulmonary blood flow redistribution. Purpose: The purposes of this study are to investigate the ventilation -perfusion distribution followed by alternation of regional pulmonary blood flow in hypovolemic shock and the effect of whole blood transfusion and Norepinephrine on the different treatment. Method: New Zealand white rabbits (4-5/group; weight 2-3kg) were used to observe the hemodynamic and pulmonary ventilation- perfusion distribution changing. After baseline one hour, hemorrhagic shock was induced by bleeding until arterial pressure of 50±5 mmHg was reached. The animals were randomly divided into four groups as follows: (1) control, maintain supine position during the 210 min observation period,(2) shock, induction of hemorrhagic shock without treatment,(3) blood, blood alone,and (4) Norepinephrine alone. We use multiple inert gas elimination technique (MIGET) to evaluate ventilation / perfusion and fluorescent microspheres technique (FMS) to evaluate pulmonary perfusion. Serum was evaluated for Lactate concentration using ELISA commerce kit. Result: Mean arterial pressure, cardiac output, systemic vascular resistance and pulmonary arterial pressure decreased after hypovolemic shock (p<0.05). Consequently, arterial oxygen partial pressure increasing shown to induced a shift of pulmonary blood flow from high flow to low flow legion. At the same time, the VA/Q distributions showed that the Log SDV and shunt decreased whereas mean of perfusion increased (p<0.05). The whole blood transfusion elevated venous oxygen partial pressure (p<0.05) and decreased lactate concentration, the norepinephrine increase cardiac output, has the different influence regarding the fluid expansion and decrease shunt (p<0.05). Conclusion: We suggest that arterial oxygen partial increasing may be related to the homogeneous shift of VA/Q distributions into high VA/Q compartments, and decrease
shunt after hypovolemic shock. Both whole blood transfusion and Norepinephrine improve systemic hemodynamic change, but both are unable to reduce the ventilation-perfusion mismatch.
正文目錄 I
表目錄 II
圖目錄 Ⅲ
中文摘要 V
英文摘要 VII
第一章 緒論 1
第二章 實驗材料與方法 19
第三章 實驗結果 36
第四章 討論 67
第五章 結論 78
第六章 參考文獻 79
1.Beale RJ, Hollenberg SM, Vincent JL, Parrillo JE. Vasopressor and inotropic support in septic shock: an evidence-based review. Crit Care Med 32: S455-65, 2004.
2.Brody TM, Larner J, Minneman KP. Human pharmacology: molecular to clinical. 3rd ed. St. Louis, Md: Mosby, 1998.
3.Cabrales P, Tsai AG, Intaglietta M. Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 27: 380-89, 2007.
4.Coons JC and Seidl E. Cardiovascular pharmacotherapy update for the intensitive care unit. Crit Care Nurs Q 30: 44-57, 2007.
5.Dutton RP, Current Concepts in Hemorrhagic Shock. Anesthesiology Clin 25: 23–34, 2007.
6.Eiseman B. Pulmonary effects of nonthoracic trauma. J Trauma 8: 649-50, 1968.
7.Englehart MS and Schreiber MA. Measurement of acid-base resuscitation endpoints: lactate, base deficit, bicarbonate or what? Curr Opin Crit Care 12: 569-74, 2006.
8.Ferguson ND, Frutos-Vivar F, Esteban A, Gordo F, Honrubia T, Peñuelas O, Algora A, García G, Bustos A, Rodríguez I. Clinical risk conditions for acute lung injury in the intensive care unit and hospital ward: a prospective observational study. Crit Care 11: R96, 2007.
9.Fortune JB, Mazzone RW, Wagner PD. Ventilation-perfusion relationships during hemorrhagic hypotension and reinfusion in the dog. J Appl Physio : Respiratory, Environmental & Exercise Physiology 54: 1071-82, 1983.
10.Fox SI. Human physiology. 6rd ed. New York, Md: McGraw-Hill, 1999.
11.Ganong WF. Review of medicine physiology. 19rd ed. Singapore, Md: Appletton&Lange, 1999.
12.Gerbino AJ, Mckinney S, Glenny RW. Correlation between ventilation and perfusion determines VA/Q heterogeneity in endotoxemia. J Appl Physiol 88: 1933-1942, 2000.
13.Gerst PH, Rattenborg C, Holaday DA. The effects of hemorrhage on pulmonary circulation and respiratory gas exchange. J Clin Invest 38: 524-38, 1959.
14.Glenny RW, Bernard S, Brinkley M. Validation of fluorescent-labeled microspheres for measurement of regional organ perfusion. J Appl Physiol 74: 2585-97, 1993.
15.Glenny RW, Bernard S, Robertson HT, Hlastala MP. Gravity is an important but secondary determinant of regional pulmonary blood flow in upright primates. J Appl Physiol 86: 623-32, 1999.
16.Guyton AC. Textbook of medical physiology. 7rd ed. Philadelphia, Md: Saunders, 1986.
17.Henry JN, McArdle AH, Bounous G, et al. The effects of hemorrhahagic shock on pulmonary alveolar surfactant. J Trauma 7: 691-99, 1967.
18.Heymann MA, Payne BD, Hoffman JI, and Rudolph AM. Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20: 55-79, 1977.
19.Hlastala MP. Multiple inert gas elimination technique. J Appl Physiol : Respiratory , Environmental & Exercise Physiology 56: 1-7, 1984.
20.Jain KK. Textbook of hyperbaric medicine. 4rd ed. Germany, Md: Hogrefe and Huber, 2004.
21.Kadowitz PJ and Hyman AL. Effect of sympathetic nerve stimulation on pulmonary vascular resistance. Circ Res 32: 221-27, 1973.
22.Lillehei RC, Longerbeam JK, Bloch JH, Manax WG. The nature of irreversible shock: experimental and clinical observations. Ann Surg 160: 682-710, 1964.
23.Majde JA. Animal Models for Hemorrhage and Resuscitation Research. J Trauma 54: S100-05, 2003.
24.Malik AB and Newell JC. Pulmonary perfusion and gas exchange in hemorrhage and shock. J Appl Physiol: Respiratory, Environmental & Exercise Physiology 42: 279-86, 1977.
25.Malik AB. The role of metabolic acidosis in the pulmonary vascular response to hemorrhage and shock. J Trauma 18: 108-114, 1978.
26.Marino PL. The ICU Book. 3rd ed. Philadelphia, Md: Williams&Wilkins, 2007.
27.Moore FA, Mckinley BA, Moore EE. The next generation in shock resuscitation. Lancet 363: 1988-96, 2004.
28.Naimark A, Dugard A, Rangno RE. Regional pulmonary blood flow and gas exchange in hemorrhagic shock. J Appl Physiol 25: 301-09, 1968.
29.Nouira S, Elatrous S, Dimassi S, Besbes L, Boukef R, Mohamed B, Abroug F. Effects of norepinephrine on static and dynamic preload indicators in experimental hemorrhagic shock. Crit Care Med 33: 2339-43, 2005.
30.Peitzman AB, Harbrecht BG, Udekwu AO, Billiar TR, Kelly E, Simmons RL. Hemorrhagic shock. Curr Probl Surg 32: 927-89, 1995.
31.Reed JH, Jr, Wood EH. Effect of body position on vertical distribution of pulmonary blood flow. J Appl Physiol 28: 303-11, 1970.
32.Revell M, Greaves I, Porter K. Endpoints for fluid resuscitation in hemorrhagic shock. J Trauma 54: S63-7, 2003.
33.Robertson HT, Hlastala MP. Microsphere maps of regional blood flow and regional ventilation. J Appl Physiol 102: 1265-72, 2007.
34.Robinson NB, Chi EY, Robertson HT. Ventilation-perfusion relationships after hemorrhage and resuscitation: an inert gas analysis. J Appl Physiol: Respiratory, Environmental & Exercise Physiology 54: 1131-40, 1983.
35.Schimmel C, Frazer D, Huckins SR, Glenny RW. Validation of automated spectrofluroimetry for measurement of regional organ perfusion using fluorescent microspheres. Comput Methods Programs Biomed 62: 115-25, 2000.
36.Schimmel C, Frazer D, Glenny RW. Extending fluorescent microsphere methods for regional organ blood flow to 13 simultaneous colors. Am J Physiol Heart Circ Physiol 280: H2496–2506, 2001.
37.Sennoun N, Montemont C, Gibot S, Lacolley P, Levy B. Comparative effects of early versus delayed use of Norepinephrine in resuscitated endotoxic shock. Crit Care Med 35: 1736-40, 2007.
38.Shafi S and Kauder DR, Fluid resuscitation and blood replacement in patients with polytrauma. Clin Orthop Relat Res 422:37-42, 2004.
39.Sherwood L. Human physiology from cells to systems, 4/e. 4rd ed. Taipei, Md: Thomson, 2004.
40.Strittmatter RR and Schadt JC. Sex differences in the respiratory response to hemorrhage in the conscious. New Zealand white rabbit. Am J Physiol Regul Integr Comp Physiol 292: R1963–69, 2007.
41.Tiefenbrun J. Sequential changes in pulmonary blood flow distribution in hemorrhagic shock. Ann Surg 174: 727-33, 1971.
42.Wagner PD, Saltzman HA, West JB. Measurement of continuous distributions of ventilation-perfusion ratios: theory. J Appl Physiol 36: 588-99, 1974.
43.Wagner PD, Naumann PF, Laravuso RB. Simultaneous measurement of eight foreign gases in blood by gas chromatography. J Appl Physiol 36: 600-05, 1974.
44.Wagner PD and West JB. Ventilation-perfusion relationship in pulmonary gas exchange. Academic Press 219-226, 1980.
45.Werle JM, Cosby RS, Wiggers CJ. Observations on hemorrhagic hypotension and hemorrhagic shock. Am J Physiol 130: 401-32, 1942.
46.West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol 19: 713-24, 1964.
47.West JB, Dollery CT. Distribution of blood flow and the pressure-flow relations of the whole lung. J Appl Physiol 20: 175-183, 1965.
48.West JB. Respiratory physiology: the essentials. 7rd ed. Philadelphia, Md: Williams&Wilkins, 2005.
49.Zaloga GP, Chernow B, Fletcher JR, Hughes P, Rainey TG, Lake CR. Increased circulating plasma norepinephrine concentrations in noncardiac causes of pulmonary hypertension. Crit Care Med 12: 85-9, 1984.
50.廖張京隸、范君瑜、何昭中、黃人珍、李瑞美:重症護理概論,台北,永大,1999。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔