|
參考文獻 [1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265-1281, 1986. [2] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal., 13, pp. 476-501, 1966. [3] Bauer,L.,Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres,Comm. Pure Appl.Math., 23, pp.529-568,1970. [4] Collatz, E.A and Levinson, N., funktionalanalysis and Numerische Mathematik, Springer-Verlag, Berlin,1964. [5] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press, New York, 1977. [6] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971. [7] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979. [8] C.-S. Chien and S.-L. Chang, 2003(10), Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems, Numer. Linear Algebra Appl., pp.335-355. [9] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation Problems, State of the Art in Numerical Analysis, edit bu A. Iserles, MJD Powe11, 1987. [10] J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in Several Variables.Academic press.New York London,1970. [11] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By C. de Boor and G.H. Golub, Academic Press, New York, p.73, 1978. [12] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York,1983. [13] Kupper, T., Mittelmann, H.D. and Weber, H. (eds.), Numerical Mehods for Bifurcation Problems, Birkhauser, Basel,1984. [14] Lazer,A.C., and Mckenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare:Analyse non Lin’ eaire 4(3),pp.243-274,1987. [15] M. G. Grandal, An introduction to constructive aspects of bifurcation and implicit function theorem in Applications of Bifurcation Theory, (T. H. Rabinowitz, Ed.) Academic, New York,1977. [16] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Joural of Functional Analysis 8, pp.321-340,1971. [17] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for algebraic and nonlinear boundary value problems, Appl. Math. Comput, 1979. [18] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237, 1980. [19] Shivaji,R., Uniqueness Result for a Class of Postione problems,Nonlinear Analysis: Theory, Methods and Application, 7,pp.223-230,1983. [20] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
|