跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/08 11:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊子昆
論文名稱:ㄧ個非等溫擴散反應模型的分支點計算及其解路徑延拓
論文名稱(外文):The Continuation of Solution Paths And The Computation of Branching Points of A Non-Isothermal Diffusion And Reaction Model
指導教授:簡國清簡國清引用關係
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:應用數學系碩士班
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
中文關鍵詞:牛頓迭代法隱函數定理打靶法虛擬弧長延拓法切線猜測法割線猜測法解分支分歧點轉彎點
外文關鍵詞:Newton's interative methodLiapunov-Schmidt reduction methodShooting methodPseudo-arclength continuation methodTangent-predictor methodSecant-predictor methodSoltion branchesBifurcation pointsTurning points
相關次數:
  • 被引用被引用:1
  • 點閱點閱:130
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本篇論文主要在探討ㄧ個非等溫擴散反應模型的分支點計算及其解路徑延拓的特性﹒
我們將以隱函數定理為基礎﹐利用打靶法和牛頓迭代法來計算出分歧點或轉彎點.接著使用Liapunov-schmidt降階法﹑切線猜測法﹑割線猜測法和虛擬弧長延拓法等數值方法﹐來找出我們的模型在各參數有限範圍內之解路徑情形﹐並試著改變各參數進而延拓出通過分支點的解分支路徑﹒
Abstract
This paper mainly discuss the continuation of solution paths and the computation of branching points of non-isothermal diffusion and reaction model.
We use the implicit function theorem as the foundations,and use the shooting method and the Newton's interative method to calculate bifurcation points or turning points. Also, we use the numerical methods of liapunov-schmidt reduction method,tangent-predictor method, secant-predictor method and pseudo-arclength continuation method to find out the multiple solutions within limited range of parameters. Finally, we try to change various parameters to continue all Solution branches from Bifurcation points.
目 錄
第一章 緒論--------------------------------------- 1

第二章 分歧理論與延拓法-----------------------------3
2.1 分歧問題--------------------------------------- 3
2.2 隱函數定理與分歧理論---------------------------- 6
2.3 局部延拓法-------------------------------------- 8
2.4 虛擬弧長延拓法---------------------------------- 11

第三章 非線性方程組之分支點與解分支----------------- 14
3.1 分支點之求法-------------------------------------14
3.2 選取分支點解分支之延拓方向 ---------------------- 26
3.3 解分支的延拓------------------------------------ 33
3.4 演算法------------------------------------------36

第四章 數值實驗----------------------------------- 41
實驗(一)-------------------------------------------- 42
實驗(二)-------------------------------------------- 68
實驗(三)-------------------------------------------- 85

第五章 結論----------------------------------------- 92

參考文獻-------------------------------------------- 94
參考文獻
[1] Allgower , E.L. and Chien, C.S., Continuation and local perturbation
for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7,
pp.1265-1281, 1986.
[2] Aselone, P. M. and Moore, R. H., An Extension of the
Newton-Kantorovich Method for Sloving Nonlinear Equations with
An Application to Elasticity. J. Math. Anal., 13, pp. 476-501, 1966.
[3] Bauer,L.,Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres,Comm. Pure Appl.Math., 23, pp.529-568,1970.
[4] Collatz, E.A and Levinson, N., funktionalanalysis and Numerische Mathematik, Springer-Verlag, Berlin,1964.
[5] Crandall, M.G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of
Bifurcation Theorem, edited by P.H. Rabinowtiz, Academic Press,
New York, 1977.
[6] Crandall, M.G., and Rabinowitz, P.H., Bifurcation from simple
eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[7] Crandall, M.G. and Rabinowliz, P. H., Mathematical Theory of
Bifurcation, Bifurcation Phenomena in Mathematical Physics and
Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced
Study Institute Series, 1979.
[8] C.-S. Chien and S.-L. Chang, 2003(10), Application of the Lanczos algorithm for solving the linear systems that occur in continuation problems, Numer. Linear Algebra Appl., pp.335-355.
[9] Jepson, A.D. and Spence, A., Numerical Methods for Bifurcation
Problems, State of the Art in Numerical Analysis, edit bu A. Iserles,
MJD Powe11, 1987.
[10] J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in Several Variables.Academic press.New York London,1970.
[11] Keller, H.B., in “Recent Advances in Numerical Analysis”, Ed. By
C. de Boor and G.H. Golub, Academic Press, New York, p.73, 1978.
[12] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation
Theory and Dissipative Structures, Springer-Verlag, New York,1983.
[13] Kupper, T., Mittelmann, H.D. and Weber, H. (eds.), Numerical Mehods for Bifurcation Problems, Birkhauser, Basel,1984.
[14] Lazer,A.C., and Mckenna, P. J. Large Scale Oscillatory Behaviour in loaded asymmetric systems. Ann. Inst. Henri Poincare:Analyse non Lin’ eaire 4(3),pp.243-274,1987.
[15] M. G. Grandal, An introduction to constructive aspects of bifurcation and implicit function theorem in Applications of Bifurcation Theory, (T. H. Rabinowitz, Ed.) Academic, New York,1977.
[16] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Joural of Functional Analysis 8, pp.321-340,1971.
[17] M. Kubicek and M. Marek, Evaluation of limit and bifurcation for
algebraic and nonlinear boundary value problems, Appl. Math.
Comput, 1979.
[18] Rheinboldt, W.C., Solution Fields of Nonlinear Equations and
Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,
1980.
[19] Shivaji,R., Uniqueness Result for a Class of Postione problems,Nonlinear Analysis: Theory, Methods and Application, 7,pp.223-230,1983.
[20] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,
1978.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊