(3.235.11.178) 您好!臺灣時間:2021/02/26 02:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李泰鋐
研究生(外文):tai hung li
論文名稱:以人體脈搏訊號為基礎之情緒偵測支援教師經營線上討論互動學習
論文名稱(外文):Emotion Detection based on Human PulseSignal for Supporting Teachers to Conduct Interactive Learning with Students on Online Discussion Board
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
學位類別:碩士
校院名稱:國立花蓮教育大學
系所名稱:學習科技研究所
學門:教育學門
學類:教育科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:線上學習嵌入式系統傅立葉轉換支向機生理訊號
外文關鍵詞:E-learningembedded systemscomputersystemFourier transformSVMphysiological signals
相關次數:
  • 被引用被引用:2
  • 點閱點閱:291
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
線上學習是藉由網際網路所傳遞的教學模式,具有超越時間、空間、互動性
高、並可獲得立即性回饋的特性,已成為新一代教與學的新選擇,而學習者的情
緒變化對於學習頗富影響力,數位學習領域也嘗試利用人工智慧的方法在學習過
程中偵測學習者情緒。因此本研究以嵌入式系統結合感測器、訊號處理電路與
8051晶片,完成一套脈搏訊號感測暨傳輸系統,將情緒脈搏訊號透過無線網路傳
送至伺服器端,並進行以人類脈搏分析為主的情緒偵測。在本研究的實驗中,共
有10位受測者參與,以線上影片與電腦遊戲引發出緊張、平靜、歡樂三種情緒,
並以攝影機錄製整個實驗過程,根據影片內容來擷取出情緒脈搏訊號,脈搏訊號
首先利用傅立葉轉換將脈搏訊號由時域轉換至頻域,並依據不同頻率的諧波成分
進行特徵擷取,再透過支向機的技術做情緒分類預測,初步結果在606筆取得之
三種情緒脈搏訊號之交叉驗證正確率為76.824%;為了進一步提高情緒偵測的正
確率,本研究進一步濾除取樣不夠精確的雜訊後得到419筆資料,並再次進行三
種情緒之交叉驗證正確率提昇為79.7136%。最後,本研究進一步結合所發展的人
類脈搏情緒偵測系統於線上討論區,輔助老師與學生進行線上討論區教學時可以
即時瞭解學習者的情緒反應,進而幫助老師依據學習者不同情緒反應輔導學生進
行有效學習。目前本研究所提出依據人類脈搏生理訊偵測學習情緒的方法已經得
到不錯的辨識結果,這證明使用生理訊號探討學習者情緒反應為一可行的研究方
向,後續在諸如語言學習焦慮情緒偵測及基於情緒反應之個人化學習等應用上具
有極高的研究價值。
In recent years, E-learning has been a popular learning mode due to the fast growth of the Internet and it has advantages in terms of high interaction, getting feedback immediately, and breaking the limitations of learning time and space. In addition, many studies indicated that the variations of learning emotions have key affection to the learning outcomes of E-learning and many studies also proposed that detecting human emotions by physiological signals is a practicable scheme.Accordingly, the study employed sensor, signal processing, communication and system on chip (SOC) techniques to develop a embedded human emotion detection system based on human pulse signals, which can detect three human emotions including nervous, peaceful, and joyous for supporting teachers to conduct interactive learning with students on online discussion board. There are totally ten volunteers who were invited to participate in this experiment. In the experiments, several selected web movies and computer games were applied to cause emotion responses.
Meanwhile, the pulse signals caused by emotion variations are retrieved by the developed embedded human emotion detection system and stored in the database for emotion analyses. To process the pulse signals for emotion detection, the extracted human pulse signals are first transformed by Fourier transform from time domain to frequency domain, then the transformed data is used to extract emotion features for training an emotion detection model by support vector machine (SVM). The accuracy rate of the modeling emotion detection mechanism evaluated by cross validation is 76.8254%. To further filter out noisy human pulse data, the accuracy rate of emotion detection evaluated by cross validation can be promoted from 76.824% to 79.7136%. Currently, the proposed human emotion detection mechanism has been successfully applied to the online discussion board to support teachers for conducting interactive
III learning with students.
第一章 緒論
第二章 文獻探討
第三章 系統架構與實驗過程
第四章 實驗結果分析
參考文獻
一、英文部分
Alena, N. , Helmut, P., & Mitsuru, I. (2007). An Expressive Avatar for Instant
Messaging Endowed with Emotional Intelligence. Lecture Notes in Computer
Science, 4722, 395-396.
Bates J., A. Bryan Loyall, W. Scott Reilly (1992). Integrating Reactivity, Goals, and
Emotion in a Broad Agent. In the Proceedings of the 14th Annual Meeting of the
Cognitive Science Society.
Bercht, M., & Viccari, R. (2000). Pedagogical agents with affective and cognitive
dimensions. In Proceedings of the Congreso Iberoamericnao de Informatica
Educativa, Vina del Mar.
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal
margin classifiers. In 5th Annual ACM Workshop on COLT, 144-152.
Chien-Chih Huang, Rita Kuo, Maiga Chang, Jia-Sheng Heh (2004). Foundation
Analysis of Emotion Model for Designing Learning Companion Agent.
Proceedings of the IEEE International Conference on Advanced Learning
Technologies.
Clark, R. C., & Mayer, R. E. (2003). E-learning and the science of instruction:
Proven guidelines for consumers and designers of multimedia learning, San
Francisco: Jossey-Bass.
Coles, G. (1998) Reading Lessons: The Debate over Literacy. New York: Hill &
Wang.
Corinna Cortes and V. Vapnik (1995). Support-Vector Networks. Machine Learning,
20.
Damasio, A. (1994) Descartes' Error: Emotion, reason, and the human brain. New
York: G. P. Putnam.
De Vicente, A., & Pain, H. (2002). Informing the detection of the students'
motivational state: an empirical study. In: International Conference on
Intelligent Tutoring Systems, pp. 933-943.
Dexter, S. L., Anderson, R. E., & Becker, H. J. (1999). Teachers' views of computers
as catalysts forchanges in their teaching practice. Journal of Research on
Computing in Education, 31(3), 221-239.
63
Dias, L. B. (1999). Integrating technology: some things you should know. Learning &
Leading with Technology, 27 (3), 10-13.
Ekman, P. (1999). Basic emotions. In Dagleish, T. and Power, M., editors, Handbook
of Cognition and Emotion, pp. 45–60. Wiley, New York.
Emmanuel, B., Pierre, C., & Claude, F. (2007). Towards Advanced Learner Modeling:
Discussions on Quasi Real-time Adaptation with Physiological Data. Seventh
IEEE International Conference on Advanced Learning Technologies (ICALT
2007).
Flottemesch, K. (2000). Building Effective Interaction inDistance Education: A
Review of the Literature.Educational Technology, 40(3), 46-51.
Goleman , D. (1995). Emotional Intelligence. New York: Bantam Books.
Herbelin, B., Benzaki, P., Riquier, F., Renault, O., & Thalmann, D. (2004). Using
physiological measures for emotional assessment: a computer-aided tool for
cognitive and behavioural therapy. Proc. 5th Intl Conf. Disability, Virtual
Reality & Assoc.
Izard, C.E. (1984) Emotion-cognition relationships and human development. In C.E.
Izard, J. Kagan, & R.B. Zajonc (Eds) Emotions, Cognition and Behavior. New
York: Cambridge University Press.
Jaques, P. A. & Viccari, R. (2004a) A BDI Approach to Infer Student’s Emotions. In:
Advances in Artificial Intelligence: proceedings IBERAMIA 2004. 9.
Ibero-American Conference on AI, 2004 nov. 22-26, Puebla, México. pp.
901-911.
Jaques, P. A. et al. (2004b) Applying Affective Tactics for a Better Learning. In:
Proceedings of the 16. European Conference on Artificial Intelligence (ECAI)
2004, aug. 22-27, Valencia, Spain. pp.109-113.
Jaques, P. A., & Viccari, R. M. (2006). Considering students’ emotions in
computer-mediated learning environments. In Z. Ma (Ed.), Web-based
intelligent e-learning systems: Technologies and applications (pp. 122-138).
Hershey, PA: Information Science Publishing.
John-Steiner, V. (2000) Creative Collaborations. Oxford: Oxford University Press.
Jonghwa, K. (2007).Robust Speech Recognition and Understanding. In M. Grimm &
K. Kroschel(Eds.), Bimodal Emotion Recognition using Speech and
Physiological Changes (pp. 265-280). Austria: I-Tech Education and Publishing.
Kazuhiko, T. (2004). Remarks on Emotion Recognition from Bio-Potential Signals.
64
2nd International Conference on Autonomous Robots and Agents.
Kiyhoshi, N., & Tomoya, K. (2006). A Multi-Modal Emotion-Diagnosis System to
Support e-Learning. Proceedings of the First International Conference on
Innovative Computing, Information and Control (ICICIC'06).
Kopecek, I. (2000). Emotions and Prosody in Dialogues: An Algebraic Approach
Based on User Modelling. In The Proceedings of the ISCA Workshop on Speech
and Emotions. Belfast: ISCA, pp. 184-189.
Krashen, S. (1985). The input hypothesis: Issues and implications. NY: Longman.
LeDoux, J. (1994). Emotion, memory, and the brain. Scientific American, 270 , 50-57.
Lee, C. S., & Tan, T. H. (2003). HumaniZing E-Learning. The 2003
InternationalConference on Cyberworlds, 37, 377-386.
Lin, B., & Hsieh, C. (2001). Web-based teaching and learner control: a research
review. Computers & Education, 37, 377-386.
Mallat, S. (1999). A Wavelet Tour of Signal Processing, Second Edition. Academic
Press.
Mehlinger, H. D. (1996). School reform in the information age. Phi Delta Kappan,
77(6), pp. 400-407.
Mohamed, B. A., Mahmoud, N. (2007). EMASPEL (Emotional Multi-Agents System
for Peer to peer E-Learning). Seventh IEEE International Conference on
Advanced Learning Technologies (ICALT 2007).
Moursund, D. (1992). The technology coordinator. Eugene.Oregon: International
Society for Technology in Education.
Noble, W. S. (Formerly Grundy, W. N.), 2003. Support vector machine applications
in computational biology, A survey article of Dept. of Genome Sciences,
University of Washington.
Oppenheim, Alan V.; Schafer, R. W.; & Buck, J. R., (1999). Discrete-time signal
processing. N.J: Prentice Hall.
Piaget, J. (1989) Les relations entre l’intelligence et l’affectivité dans le
developpement de l’enfant. Rimé, B.; Scherer, K. (Eds.) Les Émotions. Textes
de base en psychologie. Paris: Delachaux et Niestlé. pp. 75-95.
Picard R. W., Healey, J., & Vyzas, E. (2001). Toward Machine Emotional
Intelligence: Analysis of Affective Physiological State. IEEE Transactions
Pattern Analysis and Machine Intelligence, 23(10).
65
Reilly, R., & Kort, B. (2004). The Science Behind the Art of Teaching Science:
Emotional State and Learning. In C. Crawford et al. (Eds.), Proceedings of
Society for Information Technology and Teacher Education International
Conference 2004, 3021-3026.
Shaikh, M. A. M., Hua, W., Ishizuka, M. & Mostafa, A. M. (2005). Modeling an
Affectionate Virtual Teacher for e-Learning underpinning 3-Dimensional
Emotion Model. Proc. 8th Int'l Conf. on Computer and Information Technology
(ICCIT 2005), 280-285.
Siegel, J., Dubrovsky, V., Kiesler, S., & McGuire, T. (1986). Group processes in
computer-mediated communication. Organizational behavior and human
decision processes, 37, 147-187.
Tcherkassof, A. (1999) Les indices de préparation à l’action et la reconnaissance des
expressions émotionnelles faciales. Revue Européenne de Psychologie
Appliquée, 49(2), 99-105.
Tu, C. H. (2000). “Critical Examination of Factors Affecting Interaction on CMC”,
Jounal of Network and Computer Applications (23) 39-58.
Vapnik, V. N. (1998). The support vector method of function estimation. In J.
Suykens and J. Vandewalle (Eds.), Nonlinear Modeling: Advanced Black-Box
Techniques (pp. 55-86). Boston: Kluwer Academic Publishers.
Vapnik, V. N., (1998).Statistical Learning Theory. Adaptive and learning systems for
signal processing, communications, and control. Wiley, New York.
Vojislav Kecman: (2001).Learning and Soft Computing - Support Vector Machines,
Neural Networks, Fuzzy Logic Systems, The MIT Press, Cambridge, MA,.
Vygotsky, L. (1994). The problem of the environment. In: R. van der Veer and J.
Valsiner, The Vygotsky Reader. Oxford, Blackwell.
Walter, J. B. (1996). Computer-mediated communication: Impersonal, interpersonal,
and hyperpersonal interaction. Communication Research, 21(10), 3-43.
Walter, J. B., Anderson, J. F., & Park, D. W. (1994). Interpersonal effects in computer
mediated communication: A meta-analysis of social and anti-social
communication. Communication Research, 21, 460-487.
Wang, H., Prendinger, H., & Igarashi, T. (2004). Communicating Emotions in Online
Chat Using Physiological Sensors and Animated Text. In Proceedings of the 1st
international conference for human-computer interaction, 1171-1174.
Wehrle, T., & Kaiser, S. (2000). Emotion and facial expression. In A. Paiva (Ed.),
66
Affect in Interactions: Towards a new generation of interfaces (pp. 49-63).
Heidelberg: Springer.
二、中文部分
王唯工 (2002)。氣的樂章。
王銀泉,萬玉書 (2001)。外語學習焦慮及其對外語學習的影響。外語教學與研究,
中國。
武自珍 (1997)。理性情緒心理學入門。台北:心理。
林昭伶(2005)。台灣心理諮商資訊網的留言板使用者之求助知覺歷程研究。國
立彰化師範大學輔導與諮商學系輔導活動教學碩士班碩士論文,彰化。
張淵凱 (2003)。以ARM為基礎的脈搏訊號處理系統之研製。義守大學電子工程
研究所碩士論文,高雄。
張曉君 (2007)。農村學生學習英語的心理障礙分析及對策。新課程研究基礎教
育,中國。
黃加孟 (2007)。以嵌入式系統晶片實現脈搏生理訊號監測系統。國立台灣師範
大學工業教育學系碩士論文,台北。
黃健智 (2003)。利用情緒模型設計學習代理人。中原大學資訊工程學系碩士學
位論文,桃園。
慎基德 (2006)。以生理訊號探討多媒體環境之使用者情感反應。國立台灣大學
電機工程學研究所碩士論文,台北。
劉紘志 (2004)。台灣地區老人健康行為對身體功能之影響。臺中健康暨管理學
院健康管理研究所碩士論文,台中。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔