跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/22 19:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:江侊紘
研究生(外文):Kuang-hung Chiang
論文名稱:重複器插入位置尋求多源多汲匯流排傳遞延遲的最小化
論文名稱(外文):Propagation Delay Minimization for Multi-source Multi-sink Bus with Located Repeater Insertion
指導教授:蔡加春蔡加春引用關係
指導教授(外文):Chia-chun Tsai
學位類別:碩士
校院名稱:南華大學
系所名稱:資訊管理學研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:42
中文關鍵詞:傳遞延遲匯流排重複器插入
外文關鍵詞:Repeater insertionPropagation delayFED modelBus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
  自從超大型積體電路的製程技術進入深次微米之後,影響系統效能的因素已經由原先的閘級延遲改變為連線延遲,因此如何減少連線延遲便成為提昇系統效能的一個重要目標。以往對於連線延遲的計算方式是採用RC或者RLC模型,但隨著晶片的工作頻率不斷提昇,使得原本不被考慮的電感效應越來越明顯。在本論文中則使用與HSPICE誤差值極小的fitted Elmore delay(FED)模型用來評估與計算連線延遲。
  
  匯流排普遍存在於一顆晶片內,其連線延遲也直接影響晶片內部電路的執行效能,如何減少匯流排上的訊號延遲將是影響電路執行效能的關鍵因素。本論文提出三個演算法來降低多源多汲(multi-source multi-sink)匯流排上的訊號延遲,此演算法是以FED 模型來計算連線延遲,我們在匯流排上找出臨界路徑上每一個線段後,平均插入適當的雙向訊號重複器同時調整其大小,並繼續找出臨界路徑中訊號重複器插入的最佳位置來改善連線延遲,反覆此程序,直到臨界路徑的連線延遲不能再改善為止。根據實驗結果顯示,我們所提出的演算法與文獻比較對於不同製程參數0.18微米和0.13微米的連線延遲至少可以改善1.8%和3.7%。
  Since the advance of deep submicron meter technology in VLSI, the performance dominating factor is changed from gate delay to interconnect delay. Therefore, how to reduce interconnection delay becomes a critical goal for improving system performance. The RC and RLC delay models are two widely used models for calculating the interconnection delay in the past. But the increment of working frequency of chip leads the designer to re-exam the effect of inductance. In this thesis the fitted Elmore delay (FED) model which has less simulation error compared to HSPICE is used for computing and evaluating interconnection delay.
  
  Bus is an important transmission media inside a chip and its wire connection also significantly influences the performance of circuit. Eliminating the propagation delay of signal on the bus helps us to increase the performance of circuit. In this thesis we also proposed a greedy algorithm to reduce the signal transmission delay for multi-source and multi-sink structures on the bus. In our proposed algorithm, the bidirectional repeaters are averagely inserted into the critical path and the size of repeaters is also adjusted. Afterward, the best position where the repeater should be inserted is found to improve the delay. The above steps are repeatedly executed until the minimum delay is stable. Experimental results show that our proposed algorithm can at least reduce 1.8% and 3.7% propagation delay time for the processes of 0.18µm and 0.13µm, respectively, while compared to the literatures respectively.
Acknowledgment…………………………………………………………………………v
Chinese Abstract…………………………………………………………………………vi
English Abstract………………………………………………………………………viii
List of Figures…………………………………………………………………………xi
List of Tables……………………………………………………………………………xii
  
Chapter 1 Introduction………………………………………………………………………1
1.1 Motivation…………………………………………………………………………2
1.2 Related Works………………………………………………………………………3
1.3 Thesis Organization…………………………………………………………………5
  
Chapter 2 Problem Formulation…………………………………………………………6
  
Chapter 3 Delay Model……………………………………………………………………13
3.1 FED Delay Model…………………………………………………………………13
3.2 Delay Valuation with Repeater Insertion…………………………………………17
  
Chapter 4 Proposed Algorithms…………………………………………………………20
4.1 Multiple Repeater Insertion Algorithm……………………………………………24
4.2 Repeater Position Adjustment Algorithm…………………………………………27
4.3 Multiple Repeater Insertion with Position Adjustment Algorithm………………30
  
Chapter 5 Experimental Results…………………………………………………………32
  
Chapter 6 Conclusion and Future Works…………………………………………………39
  
References…………………………………………………………………………………40
[1] W. C. Elmore, “The transient response of damped linear networks,” Journal of Applied Physics, vol. 19, pp. 55-63, January 1948.
 
[2] A. I. Abou-Seido, B. Nowak, and C. Chu, “Fitted Elmore Delay: A Simple and Accurate Interconnect Delay Model,” IEEE Transactions on VLSI Systems, vol. 12, Issue 7, pp. 691-696, July 2004.
 
[3] D.-Y. Kao, C.-C. Tsai, C.-K. Cheng, and T.-T. Lin, “New design and implementation for signal repeaters,” The Sixth VLSI Design/CAD Workshop, pp. 173-176, 1995.
 
[4] C.-C. Tsai, Y.-J. Jiang, and S.-H. Kou, “Design and implementation of bus repeater,” The 13th Technological and Vocational Education Conference, pp. 297-306, May 1998.
 
[5] J. L. Wyatt, Circuit Analysis, Simulation and Design. North-Holland, The Netherlands:Elsevier Science, 1987.
 
[6] J. Lillis, C.-K. Cheng, and T.-Y. Lin, “Simultaneous routing and buffer insertion for high performance interconnect,” in Proceedings of Sixth Great Lakes Symposium on VLSI, pp. 148-153, 1996.
 
[7] J. Cong, and D. Z. Pan, ”Interconnect delay estimation models for synthesis and design planning,” in Proceedings of ASP-DAC, pp. 97-100, 1999.
 
[8] C.-C. Tsai, D.-Y. Kao, and C.-K. Cheng, “Performance driven bus buffer insertion,” IEEE Transactions on CAD of Integrated Circuits and Systems, pp. 429-437, 1996.
 
[9] T. Okamoto and J. Cong, “Buffered Steiner Tree Construction with Wire Sizing for Interconnect Layout Optimization,” in proceedings of IEEE/ACM International Conference on Computer-Aided Design, pp. 44-49, 1996.
 
[10] P. Sarkar and C. K. Koh, “Routability-driven repeater block planning for interconnect-centric floorplanning,” IEEE Transactions on CAD of Integrated Circuits and Systems, pp. 660-671, May 2001.
 
[11] J. Lillis, and C.-K. Cheng, “Timing Optimization for Multisource Nets: Characterization and Optimal Repeater Insertion,” IEEE Transactions on Computer-Aided Design of Integrated Circuit and Systems, pp. 322-331, March 1999.
 
[12] V. Adler and E. G. Friedman, “Repeater Design to Reduce Delay and Power in Resistive Interconnect,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, pp. 607-616, May 1998.
 
[13] C.-C. Tsai, J.-O. Wu and T.-Y. Lee, “Propagation Delay Minimization for RLC-Based Multi-source Multi-sink Bus with Repeater Insertion,” in proceedings of IEEE Asia-Pacific Conference on Circuits and Systems, pp. 1287-1290, December 4-7 2006.
 
[14] T.-C. Chen, S.-R. Pan, and Y.-W. Chang, “Performance optimization by wire and sizing under the transmission line model,” Proc. of International Conference on Computer Design, pp. 23-26, September 2001.
 
[15] T.-C. Chen, S.-R. Pan, and Y.-W. Chang, “Timing modeling and optimization under the transmission line model,” IEEE Trans. On VLSI systems, vol. 12, no. 1, January 2004.
 
[16] S.-L. Wang and Y.-W. Chang, “Accurate delay formulae for buffer RLC trees,” The 14th VLSI Design /CAD symposium, paper A2-2, August 2003.
 
[17] Y. I. Ismail and E. G. Friedman, "Effects of inductance on the propagation delay and repeater insertion in VLSI circuits," IEEE Transactions on Very Large Scale Integration Systems, vol.8, no.2, pp.195-206, April 2000.
 
[18] Y. I. Ismail, E. G. Friedman, and J. L. Neves, "Repeater insertion in tree structured inductive interconnect," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, , vol.48, no.5, pp.471-481, May 2001.
 
[19] R. Venkatesan, J. A. Davis, and J. D. Meindl, "Compact distributed RLC interconnect models - part IV: unified models for time delay, crosstalk, and repeater insertion," IEEE Transactions on Electron Devices, vol.50, no.4, pp. 1094-1102, April 2003.
 
[20] C.-A. Lin and C.-H. Wu, “Second-order approximations for RLC trees,” IEEE Trans. CAD of Integrated Circuits and Systems, Vol. 23, No. 7, pp. 1124-1128, July 2004.
 
[21] C.-C. Tsai, "Timing Driven Based on Signal Repeater Insertion,” Journal of National Taipei University of Technology, Vol. 31-2, pp. 111-133, September 1998.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top