跳到主要內容

臺灣博碩士論文加值系統

(44.222.134.250) 您好!臺灣時間:2024/10/13 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱筱婷
研究生(外文):Siao-Ting Chiou
論文名稱:核酸轉導蛋白的構築與特性分析
論文名稱(外文):Construction and Characterization of a Nucleotide- Transducting Construction and Characterization of a Nucleotide-Transducting Protein
指導教授:郭村勇
指導教授(外文):Tsun-Yung Kuo
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:生物技術研究所碩士班
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:97
中文關鍵詞:蛋白轉導區TATVP22 及TmHU
外文關鍵詞:protein transduction domainTATVP22TmHU
相關次數:
  • 被引用被引用:0
  • 點閱點閱:316
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
哺乳類動物的細胞具有脂質雙層膜作為保護細胞的天然屏障,因此外來的分子要穿越細胞膜進入細胞中非常困難。過去Stephen Dowdy團隊自TAT全長蛋白質中找到一段由鹼性胺基酸所組成之蛋白轉導區(protein transduction domain; PTD),稱之為TAT-PTD。這種PTD胜肽具有跨越細胞膜之能力,因此Matsushita等人認為將此PTD應用於攜帶基因進入細胞中便可克服細胞膜的屏障。而常見的具有PTD之轉位蛋白,除了上述提到之TAT-PTD之外,還有VP22-PTD。本論文構築了含有TAT及VP22之VP22-Delta重組蛋白質,其中的Delta [(SPKR)4 -iTAT-CspA]是仿效美國專利PAT. NO. 6835810製備而成。並另外於VP22之C端接入一DNA-binding protein TmHU而構築出VP22-TmHU重組蛋白質。分別將VP22-Delta及VP22-TmHU依不同之比例與pEGFP-N1 DNA共同作用後加入培養中之細胞。結果顯示各重組蛋白與DNA結合後,並無攜帶DNA進入細胞之能力。此外,在重組蛋白質VP22-TmHU的C端連結一綠色螢光蛋白構築出VP22-TmHU-GFP重組蛋白質,經細胞結合試驗,證實VP22-TmHU並不具有進入細胞之能力。VP22-Delta及VP22-TmHU雖無直接攜帶DNA轉染細胞的能力,但若與商品化之微脂粒Lipofectamine併用,則顯著提高微脂粒轉殖效率。因此這些重組蛋白質可降低微脂粒Lipofectamine的使用量。將VP22-TmHU的C端額外接入一核定位訊號(nuclear localization signals, NLS),構築而成VP22-TmHU-NLS,則該重組蛋白質經細胞轉導試驗證實具有攜帶DNA進入細胞之能力,因此該重組蛋白質將來可作為動物細胞轉殖DNA的輔助工具。
Molecules can not easily enter the cell because the cell membrane of the cell is composed of a phospholipid bi-layer, acting as a natural, protective barrier. In previous publication, Stephen Dowdy and researchers found a peptide within the TAT genome consisted of basic amino acid sequences called TAT-PTD (Protein Transduction Domain). Since PTD peptide can pass through the cell membrane barrier, Matsushita and researchers used it to carry genes into the cell. Common translocatory proteins containing the PTD include TAT-PTD and VP22-PTD. In this thesis, recombinant proteins of VP22-Delta, a construct combining VP22-PTD, and Delta/(TAT) [(SPKR)4-iTAT-CspA] (according to US Patent No. 6835810), were expressed in E. coli prokaryotic expression system. Furthermore, recombinant proteins of a fusion protein, VP22-TmHU, combining VP22-PTD and to its C-terminus, TmHU, a DNA-binding protein, were expressed. Subsequently, different ratios of VP22-Delta and/or VP22-TmHU to pEGFP-N1 DNA were mixed and transfected into the cells. Transfection efficiencies were observed and calculated by flow cytometry. Results showed that the 2 different recombinant proteins were not able to deliver DNA into the cell. In addition, VP22-TmHU-GFP, a recombinant protein of VP22-TmHU fuses with GFP, was constructed, expressed, and used in a cell membrane association assay. Again, results showed that VP22-TmHU-GFP was not carried into the cell upon trasnfection. However, when VP22-TmHU and/or VP22-Delta were used in conjunction with commercialized liposome (Lipofectamine) in transfection, transfection efficiency was significantly higher than Lipofectamine alone. Thus these recombinant proteins greatly minimize the amount of lioposome (Lipofectamine) needed for transfection. Additionally, when expressed recombinant proteins of VP22-TmHU-NLS, a construct of VP22-TmHU and a nuclear localization signal sequence fused to its C-terminus, were used in a transduction assay, results showed that VP22-TmHU-NLS was a successful nucleotide-transducting protein. Therefore, it is a useful tool to aid the delivery of transgenic DNA into animal cells.
目錄

中文摘要..........................................................................................................................i
英文摘要.........................................................................................................................ii
目錄................................................................................................................................iii
表目錄............................................................................................................................vi
圖目錄...........................................................................................................................vii
第一章 緒言..................................................................................................................1
第二章 文獻探討..........................................................................................................3
第一節、 動物體的基因轉殖...................................................................................3
第二節、 蛋白轉導技術(Protein Transduction Technology) ..................................4
第三節、 轉位蛋白(translocatory protein)簡述.......................................................5
第四節、 轉導機制...................................................................................................6
第五節、 DNA binding protein.................................................................................7
第六節、 增進基因傳遞之研究概況.......................................................................8
實驗策略一.....................................................................................................................9
實驗策略二...................................................................................................................10
實驗策略三...................................................................................................................11
第三章 材料與方法....................................................................................................12
第一節、質體DNA之構築......................................................................................12
1. VP22的序列合成及TA cloning.................................................................12
2. 質體DNA之製備.......................................................................................13
3. PCR法增幅特定DNA片段.......................................................................14
4. PCR產物確認及純化.................................................................................14
5. 限制酶切割反應(Restriction Enzyme Cleavage Reaction).......................15
6. 接合反應(Ligation)....................................................................................15
7. 勝任細胞(Competent cell)的製備.............................................................16
8. 轉形作用(Transformation).........................................................................16
9. 重組質體的挑選與確認............................................................................16
10. 重組質體的序列......................................................................................17
第二節、基因重組蛋白的表現................................................................................17
1.重組蛋白表現..............................................................................................17
2. 十二硫酸脂鈉-多聚丙烯醯胺膠體電泳分析
(Sodium dodecyl sulfate polyacrulamide gel electrophoresis, SDS-PAGE)...18
3. 西方墨漬法確認重組蛋白表現................................................................18
第三節、基因重組蛋白之純化.................................................................................19
1. 可溶態重組蛋白純化................................................................................19
2. 不可溶態(包涵體)重組蛋白之純化........................................................20
3. 蛋白質定量................................................................................................21
第四節、重組蛋白質之特性分析..............................................................................21
1. 重組蛋白質與DNA結合能力測試...........................................................21
1.1. 質體pEGFP-N1之大量製備.............................................................21
1.2. 洋菜膠電泳延阻試驗(Electrophoresis Mobility Shift Assay, EMSA) ..............................................................................................22
2.重組蛋白質與DNA結合之定性分析.........................................................22
3. 純化之重組蛋白質轉染之效率................................................................23
4. 以流式細胞儀分析重組蛋白質轉染之效率............................................25
5. 以SAS進行統計分析................................................................................25
6. 以VP22-TmHU-GFP為工具探討VP22-TmHU對細胞之作用..............25
第四章 結果................................................................................................................27
第一節、各基因重組蛋白之選殖............................................................................27
1. pTmHU-pET24a、pTmHU-pET44a及pDelta-pET44a之次選殖.........27
2. VP22的序列合成及TA cloning...........................................................27
3. pVP22-TmHU-pET24a及pVP22-Delta-pET24a之構築.....................27
4. pVP22-TmHU-GFP-pET24a之構築....................................................27
5. pVP22-TmHU-NLS-pET24a之構築...................................................27
第二節、 各基因重組蛋白之表現與純化.............................................................28
1. TmHU及Delta.........................................................................................28
2. VP22-TmHU、VP22-Delta、VP22-TmHU-NLS及VP22-TmHU-GFP...28
第三節、重組蛋白質之特性分析............................................................................29
1. 純化之重組蛋白質與DNA結合能力測試............................................29
2. 純化之重組蛋白質與DNA結合之定性分析........................................29
3. 純化之重組蛋白質轉染DNA之效率....................................................29
4. 以流式細胞儀分析螢光細胞數目.........................................................30
5. VP22-TmHU-GFP與細胞結合的情形....................................................31
第五章 討論................................................................................................................32
附錄...............................................................................................................................38
參考文獻.......................................................................................................................91

表目錄

表一、轉位蛋白之特性.................................................................................................38
表二、轉位蛋白之胺基酸及其極端鹼性之特性.........................................................38
表三、合成VP22之特異性引子序列...........................................................................49
表四、增幅TmHU、Delta及VP22基因之特異性引子序列表...................................51
表五、增幅GFP及NLS DNA合成的引子序列表......................................................52
表六、SDS-PAGE膠片之配方......................................................................................53
表七、各濃度之VP22-TmHU併用不同量lipofectamine之轉染結果...........................81
表八、各濃度之VP22-Delta併用不同量lipofectamine之轉染結果.............................81
表九、各濃度之VP22-TmHU-NLS併用不同量lipofectamine之轉染結果..................84
圖目錄

圖一、以PTD作為攜帶各種巨分的傳遞工具,可多方面應用..................................39
圖二、蛋白轉導之可能機制.........................................................................................40
圖三、仿效美國專利PAT. NO. 6835810所合成之Delta序列....................................41
圖四、仿效美國專利PAT. NO. 6835810所合成之Delta示意圖................................41
圖五、質體pTmHU-pET24a及pTmHU-pET44a的構築............................................42
圖六、質體pDelta-pET44a的構築...............................................................................43
圖七、質體pVP22-TmHU-pET24a的構築..................................................................44
圖八、質體pVP22-Delta-pET24a的構築.....................................................................45
圖九、質體pVP22-TmHU-GFP-pET24a的構築..........................................................46
圖十、質體pVP22-TmHU-NLS-pET24a的構築........................................................ 47
圖十一、以引子延伸法合成之VP22 DNA序列圖.....................................................48
圖十二、以四段引子合成VP22之示意圖...................................................................49
圖十三、pET system 原核表現系統............................................................................50
圖十四、以PCR法增幅TmHU基因之洋菜膠電泳分析圖........................................54
圖十五、以PCR法增幅Delta基因之洋菜膠電泳分析圖...........................................54
圖十六、TmHU選殖入原核表現載體pET24a之電泳分析圖....................................55
圖十七、Delta選殖入原核表現載體pET44a之電泳分析圖......................................55
圖十八、將TmHU選殖入pET24a及pET44a後進行DNA定序之結果....................56
圖十九、將Delta選殖入pET24a及pET44a後進行DNA定序之結果......................56
圖二十、以PCR法增幅VP22之洋菜膠電泳分析圖..................................................57
圖二十一、VP22序列分析圖.......................................................................................58
圖二十二、VP22選殖入pTmHU-pET24a重組質體之電泳分析圖...........................59
圖二十三、Delta選殖入pVP22-pET24a重組質體之電泳分析圖..............................59
圖二十四、VP22-TmHU序列分析圖...........................................................................60
圖二十五、VP22-Delta序列分析圖.............................................................................61
圖二十六、GFP選殖入pVP22-TmHU-pET24a重組質體之電泳分析圖..................62
圖二十七、pVP22-TmHU-GFP-pET24a序列分析圖..................................................63
圖二十八、以PCR法增幅NLS基因之洋菜膠電泳分析圖........................................64
圖二十九、NLS選殖入pVP22-TmHU-pET24a重組質體之電泳分析圖..................64
圖三十、VP22-TmHU-NLS序列分析圖......................................................................65
圖三十一、以28℃誘導TmHU/pET44a/BL21 codon及
TmHU/pET44a/BL21 DE3重組蛋白質表現之SDS-PAGE分析圖.......66
圖三十二、以28℃誘導Delta/pET44a/BL21 Codon重組蛋白質表現
之SDS-PAGE分析圖..............................................................................67
圖三十三、以SDS-PAGE及Western法分析重組蛋白TmHU及Delta示意圖….....68
圖三十四、以37℃誘導VP22-TmHU/pET24a/BL21 Codon
重組蛋白質表現之SDS-PAGE示意圖....................................................69
圖三十五、以37℃誘導VP22-Delta/pET24a/BL21 Codon
重組蛋白質表現之SDS-PAGE示意圖....................................................70
圖三十六、以37℃誘導VP22-TmHU-GFP/pET24a/BL21 DE3
重組蛋白質表現之SDS-PAGE示意圖....................................................71
圖三十七、以37℃誘導VP22-TmHU-NLS/pET24a/BL21 Codon
重組蛋白質表現之SDS-PAGE示意圖....................................................72
圖三十八、以SDS-PAGE及Western法分析重組蛋白
VP22-TmHU及VP22- Delta示意圖........................................................73
圖三十九、以SDS-PAGE及Western法分析重組蛋白
VP22-TmHU-GFP示意圖.........................................................................74
圖四十、以SDS-PAGE及Western法分析重組蛋白
VP22-TmHU-NLS示意圖...........................................................................75
圖四十一、以EMSA法分析純化之重組蛋白質TmHU
及Delta與DNA結合能力之洋菜膠電泳分析圖....................................76

圖四十二、以EMSA法分析純化之重組蛋白質VP22-TmHU
與DNA結合能力之洋菜膠電泳分析圖..................................................77
圖四十三、以EMSA法分析純化之重組蛋白質VP22-Delta
與DNA結合能力之洋菜膠電泳分析圖..................................................78
圖四十四、以EMSA法分析純化之重組蛋白質VP22-TmHU-NLS及VP22-TmHU-GFP與DNA結合能力之洋菜膠電泳分析圖...................79
圖四十五、以Western blot分析VP22-Delta/24a/codon與DNA結合之能力............80
圖四十六、VP22-TmHU併用lipofectamine轉染CHO細胞之結果圖......................82
圖四十七、VP22-Delta併用lipofectamine轉染CHO細胞之結果圖.........................83
圖四十八、VP22-TmHU-NLS轉染CHO細胞之結果圖............................................85
圖四十九、以流式細胞儀分析VP22-TmHU及VP22-Delta
併用不同量的lipofectamine的轉染效率分析圖.....................................86
圖五十、以流式細胞儀分析VP22-TmHU及VP22-Delta與
lipofectamine、pFGFP-N1不同添加次序的轉染結果分析圖....................87
圖五十一、以流式細胞儀分析VP22-TmHU-NLS轉染CHO細胞的效率分析圖....88
圖五十二、以流式細胞儀分析VP22-TmHU-NLS與lipofectamine、
pFGFP-N1不同添加次序的轉染結果分析圖.........................................88
圖五十三、VP22-TmHU-GFP與CHO細胞結合分析圖.............................................89
圖五十四、以不同清洗的條件,測試VP22-TmHU-GFP
與 CHO細胞作用之分析圖.....................................................................90
參考文獻
Aints, A., Dilber, M. S., and Smith, C. I., Intercellular spread of GFP-VP22. J Gene Med 1 (4), 275-279 (1999).
Akita, H., Tanimoto, M., Masuda, T., Kogure, K., Hama, S., Ninomiya, K., Futaki, S., and Harashima, H., Evaluation of the nuclear delivery and intra-nuclear transcription of plasmid DNA condensed with micro (mu) and NLS-micro by cytoplasmic and nuclear microinjection: a comparative study with poly-L-lysine. J Gene Med 8 (2), 198-206 (2006).
Albini, A., Ferrini, S., Benelli, R., Sforzini, S., Giunciuglio, D., Aluigi, M. G., Proudfoot, A. E., Alouani, S., Wells, T. N., Mariani, G., Rabin, R. L., Farber, J. M., and Noonan, D. M., HIV-1 Tat protein mimicry of chemokines. Proc Natl Acad Sci U S A 95 (22), 13153-13158 (1998).
Ali, M., Lemoine, N. R., and Ring, C. J., The use of DNA viruses as vectors for gene therapy. Gene Ther 1 (6), 367-384 (1994).
Becker-Hapak, M., McAllister, S. S., and Dowdy, S. F., TAT-mediated protein transduction into mammalian cells. Methods 24 (3), 247-256 (2001).
Beerens, A. M., Al Hadithy, A. F., Rots, M. G., and Haisma, H. J., Protein transduction domains and their utility in gene therapy. Curr Gene Ther 3 (5), 486-494 (2003).
Benelli, R., Mortarini, R., Anichini, A., Giunciuglio, D., Noonan, D. M., Montalti, S., Tacchetti, C., and Albini, A., Monocyte-derived dendritic cells and monocytes migrate to HIV-Tat RGD and basic peptides. AIDS 12 (3), 261-268 (1998).
Benelli, R., Barbero, A., Ferrini, S., Scapini, P., Cassatella, M., Bussolino, F., Tacchetti, C., Noonan, D. M., and Albini, A., Human immunodeficiency virus transactivator protein (Tat) stimulates chemotaxis, calcium mobilization, and activation of human polymorphonuclear leukocytes: implications for Tat-mediated pathogenesis. J Infect Dis 182 (6), 1643-1651 (2000).
Bonnefoy, E. and Rouviere-Yaniv, J., HU and IHF, two homologous histone-like proteins of Escherichia coli, form different protein-DNA complexes with short DNA fragments. EMBO J 10 (3), 687-696 (1991).
Bonnefoy, E., Takahashi, M., and Yaniv, J. R., DNA-binding parameters of the HU protein of Escherichia coli to cruciform DNA. J Mol Biol 242 (2), 116-129 (1994).
Cao, G., Pei, W., Ge, H., Liang, Q., Luo, Y., Sharp, F. R., Lu, A., Ran, R., Graham, S. H., and Chen, J., In Vivo Delivery of a Bcl-xL Fusion Protein Containing the TAT Protein Transduction Domain Protects against Ischemic Brain Injury and Neuronal Apoptosis. J Neurosci 22 (13), 5423-5431 (2002).
Chen, T. Y., Hsu, C. T., Chang, K. H., Ting, C. Y., Whang-Peng, J., Hui, C. F., and Hwang, J., Development of DNA delivery system using Pseudomonas exotoxin A and a DNA binding region of human DNA topoisomerase I. Appl Microbiol Biotechnol 53 (5), 558-567 (2000).
Chin Lee, S. H., Jefferies, R., Watt, P., Hopkins, R., Sotzik, F., Reid, S., Armson, A., Boxell, A., and Ryan, U., In vitro analysis of the TAT protein transduction domain as a drug delivery vehicle in protozoan parasites. Exp Parasitol 118 (3), 303-307 (2008).
Dalrymple, M. A., McGeoch, D. J., Davison, A. J., and Preston, C. M., DNA sequence of the herpes simplex virus type 1 gene whose product is responsible for transcriptional activation of immediate early promoters. Nucleic Acids Res 13 (21), 7865-7879 (1985).
Drlica, K. and Rouviere-Yaniv, J., Histonelike proteins of bacteria. Microbiol Rev 51 (3), 301-319 (1987).
Elliott, G. D. and Meredith, D. M., The herpes simplex virus type 1 tegument protein VP22 is encoded by gene UL49. J Gen Virol 73 ( Pt 3), 723-726 (1992).
Elliott, G. and O'Hare, P., Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell 88 (2), 223-233 (1997).
Esser, D., Rudolph, R., Jaenicke, R., and Bohm, G., The HU protein from Thermotoga maritima: recombinant expression, purification and physicochemical characterization of an extremely hyperthermophilic DNA-binding protein. J Mol Biol 291 (5), 1135-1146 (1999).
Felgner, P. L., Gadek, T. R., Holm, M., Roman, R., Chan, H. W., Wenz, M., Northrop, J. P., Ringold, G. M., and Danielsen, M., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A 84 (21), 7413-7417 (1987).
Ford, K. G., Souberbielle, B. E., Darling, D., and Farzaneh, F., Protein transduction: an alternative to genetic intervention? Gene Ther 8 (1), 1-4 (2001).
Frankel, A. D. and Pabo, C. O., Cellular uptake of the tat protein from human immunodeficiency virus. Cell 55 (6), 1189-1193 (1988).
Gibson, W. and Roizman, B., Proteins specified by herpes simplex virus. Staining and radiolabeling properties of B capsid and virion proteins in polyacrylamide gels. J Virol 13 (1), 155-165 (1974).
Green, M. and Loewenstein, P. M., Autonomous functional domains of chemically synthesized human immunodeficiency virus tat trans-activator protein. Cell 55 (6), 1179-1188 (1988).
Grove, A. and Lim, L., High-affinity DNA binding of HU protein from the hyperthermophile Thermotoga maritima. J Mol Biol 311 (3), 491-502 (2001).
Hyndman, L., Lemoine, J. L., Huang, L., Porteous, D. J., Boyd, A. C., and Nan, X., HIV-1 Tat protein transduction domain peptide facilitates gene transfer in combination with cationic liposomes. J Control Release 99 (3), 435 -444(2004).
Hwu, P.L., Fusion protein for use as vector. PAT. NO. 6835810(2003).
Jaenicke, R., Do ultrastable proteins from hyperthermophiles have high or low conformational rigidity? Proc Natl Acad Sci U S A 97 (7), 2962-2964 (2000).
Kaplan, I. M., Wadia, J. S., and Dowdy, S. F., Cationic TAT peptide transduction domain enters cells by macropinocytosis. J Control Release 102 (1), 247-253 (2005).
Knopf, K. W. and Kaerner, H. C., Virus-specific basic phosphoproteins associated with herpes simplex virus type a (HSV-1) particles and the chromatin of HSV-1-infected cells. J Gen Virol 46 (2), 405-415 (1980).
Leifert, J. A. and Whitton, J. L., "Translocatory proteins" and "protein transduction domains": a critical analysis of their biological effects and the underlying mechanisms. Mol Ther 8 (1), 13-20 (2003).
Lekcharoensuk, P., Morozov, I., Paul, P. S., Thangthumniyom, N., Wajjawalku, W., and Meng, X. J., Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J Virol 78 (15), 8135-8145 (2004).
Matsushita, M. and Matsui, H., Protein transduction technology. J Mol Med 83 (5), 324-328 (2005).
McLean, G., Rixon, F., Langeland, N., Haarr, L., and Marsden, H., Identification and characterization of the virion protein products of herpes simplex virus type 1 gene UL47. J Gen Virol 71 ( Pt 12), 2953-2960 (1990).
Miller, A. D., Cationic liposome systems in gene therapy. IDrugs 1 (5), 574-583 (1998).
Mitani, K. and Caskey, C. T., Delivering therapeutic genes--matching approach and application. Trends Biotechnol 11 (5), 162-166 (1993).
Morris, M. C., Depollier, J., Mery, J., Heitz, F., and Divita, G., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol 19 (12), 1173-1176 (2001).
Murray, K. D., Etheridge, C. J., Shah, S. I., Matthews, D. A., Russell, W., Gurling, H. M., and Miller, A. D., Enhanced cationic liposome-mediated transfection using the DNA-binding peptide mu (mu) from the adenovirus core. Gene Ther 8 (6), 453-460 (2001).
Nelson, K. E., Clayton, R. A., Gill, S. R., Gwinn, M. L., Dodson, R. J., Haft, D. H., Hickey, E. K., Peterson, J. D., Nelson, W. C., Ketchum, K. A., McDonald, L., Utterback, T. R., Malek, J. A., Linher, K. D., Garrett, M. M., Stewart, A. M., Cotton, M. D., Pratt, M. S., Phillips, C. A., Richardson, D., Heidelberg, J., Sutton, G. G., Fleischmann, R. D., Eisen, J. A., White, O., Salzberg, S. L., Smith, H. O., Venter, J. C., and Fraser, C. M., Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399 (6734), 323-329 (1999).
Noguchi, H. and Matsumoto, S., Protein transduction technology: a novel therapeutic perspective. Acta Med Okayama 60 (1), 1-11 (2006).
Ott, M., Emiliani, S., Van Lint, C., Herbein, G., Lovett, J., Chirmule, N., McCloskey, T., Pahwa, S., and Verdin, E., Immune hyperactivation of HIV-1-infected T cells mediated by Tat and the CD28 pathway. Science 275 (5305), 1481-1485 (1997).
Ott, M., Lovett, J. L., Mueller, L., and Verdin, E., Superinduction of IL-8 in T cells by HIV-1 Tat protein is mediated through NF-kappaB factors. J Immunol 160 (6), 2872-2880 (1998).
Perkins, S. D., Hartley, M. G., Lukaszewski, R. A., Phillpotts, R. J., Stevenson, F. K., and Bennett, A. M., VP22 enhances antibody responses from DNA vaccines but not by intercellular spread. Vaccine 23 (16), 1931-1940 (2005).
Phelan, A., Elliott, G., and O'Hare, P., Intercellular delivery of functional p53 by the herpesvirus protein VP22. Nat Biotechnol 16 (5), 440-443 (1998).
Rajagopalan, R., Xavier, J., Rangaraj, N., Rao, N. M., and Gopal, V., Recombinant fusion proteins TAT-Mu, Mu and Mu-Mu mediate efficient non-viral gene delivery. J Gene Med 9 (4), 275-286 (2007).
Schwarze, S. R., Ho, A., Vocero-Akbani, A., and Dowdy, S. F., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285 (5433), 1569-1572 (1999).
Spear, P. G. and Roizman, B., Proteins specified by herpes simplex virus. V. Purification and structural proteins of the herpesvirion. J Virol 9 (1), 143-159 (1972).
Steven R. Schwarze, Keith A. Hruska and Steven F. Dowdy. Protein transduction: unrestricted delivery into all cells? Trends Cell Biol. 10(7), 290-295 (2000).
Tung, C. H., Mueller, S., and Weissleder, R., Novel branching membrane translocational peptide as gene delivery vector. Bioorg Med Chem 10 (11), 3609-3614 (2002).
Tyagi, M., Rusnati, M., Presta, M., and Giacca, M., Internalization of HIV-1 tat requires cell surface heparan sulfate proteoglycans. J Biol Chem 276 (5), 3254-3261 (2001).
Vives, E., Brodin, P., and Lebleu, B., A truncated HIV-1 Tat protein basic domain rapidly translocates through the plasma membrane and accumulates in the cell nucleus. J Biol Chem 272 (25), 16010-16017 (1997).
Whittaker, G. R., Riggio, M. P., Halliburton, I. W., Killington, R. A., Allen, G. P., and Meredith, D. M., Antigenic and protein sequence homology between VP13/14, a herpes simplex virus type 1 tegument protein, and gp10, a glycoprotein of equine herpesvirus 1 and 4. J Virol 65 (5), 2320-2326 (1991).
Zhao, M. and Weissleder, R., Intracellular cargo delivery using tat peptide and derivatives. Med Res Rev 24 (1), 1-12 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top