跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/16 23:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭篤宗
研究生(外文):Tu-Tsung Kuo
論文名稱:不同鹽分處理對甜瓜種子發芽與生長之影響
論文名稱(外文):Effects of Different Salinity on the Germination and Growth in Seeds of Melon (Cucumis melo L.)
指導教授:鄔家琪
指導教授(外文):Chia-Chyi Wu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:園藝學系碩士班
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:離子含量甜瓜種子發芽種子滲調耐鹽性海洋深層水
外文關鍵詞:melonseeds primingseeds germinationdeep sea waterions contentssalt tolerance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:597
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
以甜瓜 (Cucumis melo L.) ‘新世紀’、‘銀輝’、及‘蜜華’種子為參試材料,於0.2 (對照) 、4.5、9、13.5、18、25 dS.m-1不同鹽分濃度之海洋深層水 ( Deep sea water, DSW) 和NaCl溶液下,探討其發芽情形,結果隨著鹽分處理濃度的增加,甜瓜種子的平均發芽天數逐漸延長,其發芽率、發芽速率、及胚根長度均呈現下降趨勢。參試之甜瓜三個品種間對鹽分反應明顯不同。‘新世紀’ 與‘銀輝’種子在25 dS.m-1下發芽率明顯降低,而‘蜜華’種子則是在13.5 dS.m-1下發芽率明顯降低。在相同鹽分濃度下,以DSW處理之‘新世紀’、‘銀輝’種子發芽率顯著高於NaCl溶液處理者。在4.5 dS.m-1低鹽分濃度下,二種鹽分溶液都可以顯著增加‘新世紀’胚根長度,其中以海洋深層水處理者胚根長度明顯長於NaCl溶液處理者;且隨著鹽分濃度升高,二種鹽分溶液處理下之甜瓜種子胚根長度差異愈大。且對鹽分的適應能力則隨著品種與鹽分濃度而不同。
以18 dS.m-1的NaCl與DSW鹽分溶液,對甜瓜‘新世紀’、‘銀輝’及‘蜜華’種子進行72 hrs 的滲調處理,再以不同濃度之鹽分溶液 (NaCl與DSW) 進行發芽試驗。不同鹽分溶液前處理後,縮短了甜瓜種子的發芽時間,提昇種子發芽速率,促進了胚根的生長。隨著鹽分處理濃度的增加,發芽率、發芽速率、及胚根長度逐漸降低,平均發芽天數增長。NaCl及DSW二種滲調處理溶液,以NaCl溶液抑制種子發芽的程度大於相同濃度DSW處理者。各品種間受鹽分抑制程度不同,抑制程度最小的是‘新世紀’,受抑制程度最大的為‘蜜華’品種,‘銀輝’則介於兩者之間。
以0.2、4.5、9、13.5 dS.m-1等四種鹽分濃度之海洋深層水 (DSW) 與NaCl鹽分溶液進行種子發芽處理4天,以離子分析儀分析胚軸與胚根之Cl-、Na+、K+、Ca2+、及Mg2+含量。結果顯示不同品種甜瓜種子之離子分佈與含量不同。NaCl鹽分處理下以較不耐鹽‘蜜華’ Cl- 與Na+的含量最高其次為‘銀輝’,最少為相對較耐鹽的‘新世紀’,NaCl 處理下‘銀輝’胚軸的Ca2+含量大於DSW處理,而Mg2+含量以NaCl處理之‘新世紀’較高。DSW鹽分處理下以‘新世紀’的Cl-含量最高其次為‘銀輝’,最少為‘蜜華’,DSW 處理下‘蜜華’的Na+含量比NaCl 處理低。除了DSW 溶液9 dS.m-1 處理下之‘新世紀’胚軸與‘蜜華’胚根以外, DSW處理種子K+含量皆高於同一鹽分濃度NaCl處理, 9 dS.m-1 DSW 溶液處理下之胚根,Ca2+含量皆高於NaCl處理,於4.5與9 dS.m-1處理下DSW 溶液,胚軸之Mg2+含量皆高於NaCl處理,胚根部分‘銀輝’以DSW處理者,Mg2+含量顯著高於NaCl處理。‘新世紀’可忍耐DSW處理下較高的Cl-,在相同鹽分濃度下,降低NaCl 處理中的Cl-含量。不耐鹽‘蜜華’下DSW處理下,胚軸與胚根之Cl-均很低,但NaCl處理中Cl-顯著偏高。‘蜜華’下DSW與NaCl處理下,胚軸與胚根之Na+含量顯著高於另二個品種。‘新世紀’種子於DSW與NaCl處理下,胚軸與胚根之K+與Ca2+含量顯著低於‘蜜華’與‘銀輝’。
Abstract
Studied on the germination of ‘New Century’, ‘Silver Light’, and ‘Sweetie’ seeds of melon (Cucumis melo L.), treated with different concentration (0.2, 4.5, 9, 13.5, 18, 25 dS.m-1) of deep sea water (DSW) and NaCl. The results showed that along with the increasing of the salt concentration, the mean germination days of melon seeds prolonged gradually, while germination percentage, germination rate, and radicle length decreased. The three cultivatrs had different salt tolerance. Seeds of ‘New Century’ and ‘Silver Light’ decreased germination percentage under 25 dS.m-1; ‘Sweetie’ seeds decreased germination percentage under 13.5 dS.m-1. Under the same salt concentration, the germination percentage of ‘New Century’ and ‘Silver Light’ seeds treated with DSW was significantly higher than that being treated with NaCl. Under low salt concentration as 4.5 dS.m-1, the two kinds of salt solution may both significantly increase the radicle length of ‘New Century’, while the radicle length treated with DSW was apparently longer than that being treated with the NaCl solution. Moreover, along with the increasing of salt concentration, the difference of radicle length of melon seeds treated with two kinds of salt solutions was larger. The salt adaptation varied with the cultivars and salt concentrations.
The melon seeds of ‘New Century’, ‘Silver Light’ and ‘Sweetie’ primed with 18 dS.m-1 NaCl and DSW salt solutions for 72 hrs, and then germinate in different salt solutions (NaCl and DSW). Different salt pre-treatment shorted the germination time of melon seeds, the germination rate elevated, and the growth of radicle was promoted. Along with the increasing of salt concentration, germination percentage, germination rate and the radicle length gradually decreased, while the germination days prolonged. NaCl solution inhibited the germination of melon seeds greater than that being treated with DSW under the same salt concentration. ‘New Century’ exhibited higher salt tolerance than the other cultivars.
Under 0.2, 4.5, 9, and 13.5 dS.m-1 salt concentration, of DSW and NaCl solution for 4 day, the Cl-, Na+, K+, Ca2+, and Mg2+ concentration of hypocotyl and radicle of melons were analyzed. Treated with the NaCl salt solution, ‘Sweetie’ which is less salt tolerance, had the highest Cl- and Na+ content. The second place was the ‘Silver Light’. The lowest was the ‘New Century’ which is more salt tolerance. Treated with NaCl, hypocotyls of ‘Silver Light’ had higher Ca2+ content of DSW. ‘New Century’ had the highest Mg2+ content in treating with DSW. Treated with DSW, ‘New Century’ has the highest content of Cl-. The second place was ‘Silver Light’. The lowest one was ‘Sweetie’. Treated with DSW, ‘Sweetie’ has a lower content of Na+ than treated with NaCl. Except the hypocotyl of ‘New Century’ and the radicle of ‘Sweetie’ treated with the 9 dS.m-1 DSW solution, the content of K+ of seeds was higher than that being treated with NaCl under the same salt concentration. Uneder 9 dS.m-1 DSW solution, the Ca2+ content of radicle was higher than with NaCl. Treated with 4.5 and 9 dS.m-1 DSW solution, the Mg2+ content hypocotyl was higher than with NaCl. ‘Silver Light’ treated with DSW, the Mg2+ content of radicle was significantly higher then with NaCl. ‘New Century’ could tolerate higher Cl- when treated with DSW. Under the same salt concentration, the Cl- content decreased when treated with NaCl. The Cl- content of hypocotyl and radicle of the less salt tolerant ‘Sweetie’ were very low, but it was significantly high when treated with NaCl. The Na+ content of hypocotyl and radicle of ‘Sweetie’ treated with DSW and NaCl was significantly higher than the other two cultivars. The K+ and Ca2+ contents of hypocotyl and radicle of the seeds of ‘New Century’ treated with DSW and NaCl were significantly lower than those of ‘Sweetie’ and ‘Silver Light’.
目 錄

壹、 緒言 1
貳、 前人研究 4
一、 鹽分溶液對種子發芽之影響 4
二、 滲調處理對種子於鹽分溶液發芽之影響 6
三、 鹽分對植物離子濃度的影響 8
四、 種子發芽與膜系構造之影響 9
參、 不同濃度鹽分與溶液對甜瓜種子發芽之影響 13
摘要 13
一、 前言 13
二、 材料與方法 14
三、 結果 16
四、 討論 24
肆、 不同前處理於不同濃度鹽分與溶液下對甜瓜種子發芽之影響 28
摘要 28
一、 前言 28
二、 材料與方法 29
三、 結果 31
四、 討論 46
伍、 不同濃度鹽分溶液對甜瓜種子離子含量之影響 49
摘要 49
一、 前言 49
二、 材料與方法 50
三、 結果 51
四、 討論 61
參考文獻 65
王麗燕、趙可夫. 2004. NaCl脅迫對海蓬子 (Salicornia bigelovii Torr.) 離子區室化、光合作用和生長的影響. 植物生理與分子生物學學報 30 (1) : 94-98.
朱德民. 1978. 植物生長與耐鹽性. I. 植物對鹽害之反應. 科學農業 26 (7-8) : 227-233.
朱德民. 1993. 植物與環境逆境. 明文書局 台北.
行政院農業委員會. 2008. 農業統計年報:民國九十六年. 台北
宋妤. 1998. 種子發芽水分生理. 台灣之種苗 42 : 24-27.
宋妤. 1997. 蔬菜種子之滲調技術. 種苗科技專訊 20 : 24-27.
宋濟民、張寂禎. 1998. 種子之萌爆處理. 生命科學簡訊 12 (6) : 8-9.
李玉紅、唐愛均. 2003. 化學處理對菠菜種子萌芽的影響. 北農業學報12 (2) : 116-118.
李海燕、丁雪梅、周嬋、楊允菲. 2004. 鹽脅迫對三種鹽生禾草種子萌發及其胚生長的影響. 草地學報 12 (1) : 45-50.
李海雲、趙可夫、王秀峰. 2002. 鹽對鹽性植物種子萌發的抑制. 山東農業大學學報 33 (2) : 170-173.
邱凱瑩、宋濟民. 1993. 無子西瓜種子發芽生理. 台灣之種苗 12 : 21-24.
邱業先、汪金蓮. 1992. PVA滲調對菜豆種子活力及膜透性的影響. 江西農業大學學報 14 (3) : 212-217.
施純堅、黃涵. 1993. 不同鹽量對澎湖洋香瓜發芽與幼苗生長之影響. 高雄區農業改良場研究彙報 5(1) : 62-78.
施純堅. 1991. 鹽分與有機質含量對澎湖洋香瓜生長及其品質之影響. 國立台灣大學園藝研究所碩士論文.
高景輝. 1979. 植物生長與分化. 國立編譯館 台北.
張仁銓. 2000. 提昇芹菜種子品質之研究. 國立中興大學園藝學研究所碩士論文.
張世融. 1999. 淹水對蘇丹草種子萌芽之影響. 畜產專訊 29 : 12-13.
張秀玲、李瑞利、石福臣. 2007. 鹽脅迫對野大豆種子萌發特性的影響. 種子 26 (8) : 21-26.
郭華仁、朱鈞. 1981. 種子滲調法. 科學農業 29:381-383.
陳滿盈、陸幗一. 1991. 種子萌動過程ATP含量的變化及其與種子活力的關係. 種子 6 (12) : 39-40.
彭文新、張寶紅. 1997. 鈣處理對鹽脅迫下大豆種子萌發及其生理生化指標的影響. 大豆科學 16 (1) : 48-52.
斯琴巴特爾、吳紅英. 2000. 鹽脅迫對玉米種子萌發及幼苗生長的影響. 乾旱區資源與環境 14 (4) : 76-80.
渠曉霞、黃振英. 2005. 鹽生植物種子萌發對環境的適應策略. 生態學報 25 (9) : 2389-2398.
黃玉梅、郭豐忠. 2006. 研發滲調添加殺菌劑技術量產商品化種子. Available at: www.tss.gov.tw/02/95/95農科-1.3.2-種-XA.pdf Accessed 19 January, 2008.
黃惠琳、許應哲. 2001. 台灣省洋香瓜產銷結構之規劃. 臺南區農業改良場研究報告 38 : 69-83.
黃圓滿、黃賢良. 2005. 台灣農家要覽農作物篇(二). p.459-464 豐年社
黃賢良、鄭安秀、陳文雄. 1999. 隧道式洋香瓜栽培管理. 台南區農業改良場技術專刊 88-6 (92) : 1-26.
黃學林、張保恩. 1999. 種子吸脹期間的洩漏物與活力的關係. 植物生理學通報 35(3) : 231-231.
楊永青、汪曉峰. 2004. 種子活力與生物膜的研究現狀. 植物學通報 21 (6) : 641-648.
楊秀玲、郁繼華、李雅佳、李建建、張韻. 2004. NaCl 脅迫對黃瓜種子萌發及幼苗生長的影響. 甘肅農業大學學報 1: 6-9.
經濟部水利署. 2007. 開創藍金天然資源 永續經營東部產業─深層海水說明www.wra.gov.tw/ct.asp?xItem=34032&ctNode=5281&comefrom=lp - 11k - Accessed 02 March, 2008.
鄔家琪. 2001. 鹽分對小胡瓜種子發芽與幼苗生長之影響. 宜蘭技術學報 6:1-10.
劉政道. 1996. 經由滲調處理改善逆境環境-種子發芽之水分之掌控(上).台灣之種苗 27 : 8-16.
劉政道. 1994. 種子吸水與乾燥生理,水分逆境與發芽控制之關係(三). 台灣之種苗 14 : 10-13.
劉英德. 1988. 種子生理. 五洲出版社 台北.
劉賢祥. 1990. 植物生理學. 財團法人徐氏基金會. 台北.
劉寶玉、張文輝、劉新成、姜珊. 2007. 沙棗和檸條種子萌芽期耐鹽性研究. 植物研究 27 (6) : 721-728.
蔡竹固、童伯開、陳瑞祥. 1999. 甜瓜病害的診斷及其防治. 國立嘉義技術學院農業推廣委員會.
鄭光華、粱崢、林堅. 2001. 種子吸脹冷害和滲透調控的研究. 中國科學院院刊 3 : 182-187.
謝德意、王惠萍. 2000. 鹽脅迫對棉花種子萌發及幼苗生長的影響. 種子 3 : 29-30.
顏勝雄. 2002. 本地芹菜品種種子發芽特性之研究. 國立台灣大學園藝研究所碩士論文
羅聖賢. 2007. 深層海水在農作物栽培上之利用與規劃. Available at: http://www.ttdares.gov.tw/pdf/961021jp.pdf Accessed 05 March, 2008.
羅慶雲、於丙軍、劉友良. 2003. NaCl 脅迫下Cl-和Na+對大豆幼苗脅迫作用的比較. 中國農業科學 36 (11) : 1390-1394.
Akers, S. W. and K. E. Holley. 1986. SPS: A system for priming seeds using aerated polyethylene glycol or salt solution. Hort. Sci. 21 (3) : 529-531.
Alberico, G. J. and G. R. Cramer. 1993. Is the salt tolerance of maize related to sodium exclusion I. Preliminary screening of seven cultivars. J. Plant Nutr 16 : 2289-2303.
Al-Harbi, A. R. 1995. Growth and nutrient composition of tomato and cucumber seedlings as affected by sodium chloride salinity and supplemental calcium. J Plant Nutr. 18 : 1403-1416.
Ashraf, M. and H. Rauf. 2001. Inducing salt tolerance in maize (Zea mays L.) through seed priming with chloride salts: Growth and ion transport at early growth stages. Acta Physiol. Plant. 23 : 407-414.
Ashraf, M. and S. Wahid. 2000. Time-course changes in organic metabolites and mineral nutrients in germinating maize seeds under salt (NaCl) stress. Seed Sci. Tech. 28 : 641-656.
Ashraf, M. Y., G. Sarwar, M. Ashraf, R. Afaf, and A. Sattar. 2002. Salinity induced changes in α-amylase activity during germination and early cotton seedling growth. Bio. Planta. 45(4) : 589-591.
Ashraf, M.Y., A. R. Azmi, A. H. Khan, and S. S. M. Naqvi. 1995 . Alpha-amylase and protease activities of wheat seedling grown under water stress conditions. Pak. J. Sci. Indust. Res. 38 : 430-434.
Ayers, A. D.. 1952. Seed germination as affected by soil moisture and salinity. Agron. Jour. 44 : 82-84.
Aziza, A., A. Haben, and B. Mathias. 2004. Seed priming enhances germination and seedling growth of barley under conditions of P and Zn deficiency. J. Plant Nutr. Soil Sci. 167 : 630.
Begum, F., J. L. Karmoker, Q. A. Fattah, and A. F. M. Maniruzzaman. 1992. The effect of salinity on germination and its corelation with K+, Na+, Cl- accumulation in germination seeds of Triticum aestrium L. cv. Akbar. Plant and cell physiol. 33 (7) : 1007-1014.
Bewley, J. D.. 1984. A physiological perspective on seed vigor testing. Seed Sci Tech. 12 : 561-575.
Binzel, M. L., F. D. Hess, R. A. Bressan, and P. M. Hasegawa. 1988. Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol. 86 : 607-614.
Bradford, K. J.. 1986. Manipulation of seed water relations via osmotic priming to improve germination under stress conditions. Hort. Sci. 21 : 1105-112.
Bray, C. M, P. A. Davison, M. Ashraf, and R. M. Taylor. 1989. Biochemical change duing priming of leek seeds. Ann. Bot. 63 : 185-193.
Buitink, J., O. Leprince, and F. A. Hoekstra. 2000. Dehydration-induced redistribution of amphiphilic molecules between cytoplasm and lipids is associated with desiccation tolerance in seeds. Plant Physiol. 124 : 1413-1426.
Bush, D. S.. 1995. Calcium regulation in plant cells and its role in signaling. Annu. Rev. Mol. Biol. 46 : 95-112.
Cano, E. A., M. C. Bolarin, F. Perez-Alfocea, and M. Caro. 1991. Effect of NaCl priming on increased salt tolerance in tomato. Hort. Sci. 66 : 621-628.
Cantliffe, D. J., J. M. Fischer, and T. A. Nell. 1984. Mechanism of seed priming in circumventing thermodormancy in lettuce. Plant Physiol. 75 : 290-294.
Cassaro-Silva, M. 2002. Pre-hydration and dehydration effect on Senna macranthera (Collad.) Irwin et Barn. (Caesalpiniaceae) seed germination under saline stress. Rev. Agr. 77 : 231-242.
Cayuela, E., F. Perez-Alfocea, M. Caro, and M. C. Bolarin. 1996. Priming of seeds with NaCl induces physiological changes in tomato plants grown under salt stress. Physiol. Plant. 96 : 231-236.
Chaudhuri, M. and H. H. Wiebe. 1968. Influence of calcium pretreatment on wheat germination on saline media. Plant Soil 18 : 208-216.
Cheeseman, J. M. 1988. Mechanism of Salinity tolerance in plants. Plant Physiol. 87 : 547-550.
Choudhuri, N. and R. N. Basu. 1988. Maintenance of seed vigor and viability of onion (Allium cepa L.). Seed Sci. Tech. 16 : 51-61.
Cramer, G. R., G. J. Alberico, and C. Schmidt. 1994. Salt tolerance is not associated with the sodium accumulation of two maize hybrida. Aust. J. Plant Physiol. 21 : 675-692.
Cramer, G. R., E. Epstein., and A. Läuchli. 1990. Effects of sodium, potassium and calcium on salt-stressed barley. Physiol Plant. 80 : 83-88.
Cramer, G. R. 1985. Displacement of Ca+ and Na+ form the plasmalemma of rottcells. Plant Physiol. 79 : 207-211.
Dodd, G. L. and L. A. Donovan. 1999. Water potential and ionic effects on germination and seedling growth of two cold desert shrubs. Am J. Bot. 86 : 1146-1153.
Ehlig, C. F.. 1964. Salt tolerance of raspberry, boysenberry, and blackberry. Proc. Am. Soc. Hort. Sci. 85 : 318-324.
Embrapa, Hortaliças. 2003. Muskmelon seed germination and seedling development in response to seed priming. Sci. Agricola. 60(1) : 71-75.
Epstein, E. D. W. Rains. 1987. Advance salt tolerance. Plant Soil. 99 : 17-29.
Ezekiel, R., K. S. K. Sastry, and K. M. Udaya. 1978. Growth regulator induced water and ion uptake by excised cucumber cotyledons and associated changes in protein Indian J. Expt. Bot. 16 : 519-522.
Ferreira, R. G., F. J. A. F. Tavora, and F. F. F. Hernandez. 2001. Dry matter partitioning and mineral compositeon of roots, stems and leaves of guava grown under salt stress conditions. Pesqui. Agropecu. Bras. 36 : 79-88.
Fisher, M., U. Pick., and A. Zamir. 1994. A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant physiol. 106 : 1359-1365.
Flowers, T. J., P. F. Troke, and A. R. Yeo. 1977. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 28 : 89-121.
Foolad, M. R. and Lin G. Y. 1999. Relationships cold and salt tolerance during seed germination in tomato: Germplasm evaluation. Plant Breeding 118 : 45-48.
Franco, O. L., J. E. Filho, J. T. Prisco, and E. G. Filho. 1999. Effects of CaCl2 on growth and osmoregulator accumulation in NaCl stressed cowpea seedlings. Rev. Bras. Fisiol. Veg. 11 : 145-151.
Franco, J. A., C. Esteban, and C. Rodriguez. 1993. Effects of salinity on various growth stages of muskmelon cv. Revigal. J. Hort. Sci. 68 : 899-904.
Francois, L. E. 1985. Salinity effects on germination, growth, and yield of two squash cultivars. Hort. Sci. 20(6) : 1102-1104.
Fu, J. R., X. H. Lu, R. Z. Chen, B. Z. Zhang, Z. S. Li, and D. Y. Cai. 1988. Osmocondition-ing of peanut (Archis hypogea L.) seeds with PWG to improve vigor and some biological activities. Seed Sci. Tech. 16 : 197-212.
Ghosh, B. J. Adhikary, and N. C. Banerjec.1981. Changes of some metabolites in rice seeds during aging. Seed Sci. Tech. 9 : 469-473
Grattan, S. R. and C. M. Grieve. 1992. Mineral element acquisition and growth. response of plants grown in saline environments. Agric. Ecosyst Environ. 38 : 275-300.
Greenway, H. and R. Munns. 1980. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 31: 149-190.
Guedes, A. C. and D. J. Cantliffe. 1980. Germination of lettuce seeds at high temperature after seed priming. J. Amer. Soc. Hort. Sci. 105:777-781.
Heydecker, W. and B. M. Gibbins. 1978. The priming of seeds. Acta Hort. 83 : 213-223.
Heydecker, W., J. Higgins, and Y. J. Turner. 1975. Invigoration of seed? Seed Sci. Tech. 3 : 881-888.
Hoekstra, F. A., E. A. Golovina, and J. Buitink. 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6 : 431-438.
Hoffman, G. J. and J. A. Jobes. 1978. Growth and water relations of cereal crops as Influenced by salinity and relative humidity. Agron. J. 70 : 765-769.
Ismail, A. M.. 2003. Effect of salinity on the physiological responses of selected lines/variety of wheat. Acta Agron. Hung. 51 : 1-9.
Khan, A. A., K. L. Tao, J. S. Knypl, J. S. BorkoWska, and L. E. Powell. 1978. Osmotic conditioning of seeds: physiological and biochemical changes. Acta Hort. 83 : 267-278.
López-Aguilar, R., A. Orduño-Cruz, A. Lucero-Arce, B. Murillo-Amador, and E. Troyo-Diéguez. 2003. Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Sci. Plant Nutr. 49(3) : 329-336.
Lin, C. C. and C. H. Kao. 1995. Levels of endogenous polyamines and NaCl inhibited growth of rice seedlings. Plant Growth Regul. 17 : 15-20.
Lynch, J. A.. 1989. Salinity stress increase cytoplasmic activity in maixe root protoplasts. Plant Physiol. 90 : 127-180.
Maas, E. V. and G. J. Hoffmann. 1977. Crop salt tolerance–current assessment. J. Irrig. Drain. Div. ASCE 103 : 115-134.
Mangal, J. L., P. S. Hooda and S. Lai. 1988. Salt tolerance of five muskmelon cultivars. J. Agric. Sci.110 : 641-643.
Mavrogianopoulos, G. N., J. Spanakis and P. Tsikalas. 1999. Effect of carbon dioxide enrichment and salinity on photosynthesis and yield in melon. Sci. Hort. 79 : 51-63.
Mayer, A. M. and A. Poljakoff-Mayber. 1989. The germination of seeds, 4th edn. Pergamon Press, Oxford.
McWilliam, J. R.. 1986. The national and international importance of drought and salinity effects on agricultural production. Aust. J. Plant Physiol. 13 : 1-13.
Mckersie, B. D. and R. H. Stinson. 1980. Effect of dehydration on leakage and membrand structure in Lutus comiculatus L. seeds. Plant Physiol. 66 : 316-320.
Meiri, A., D.J. Lauter, and N. Sharabani, 1995. Shoot growth and fruit-development of muskmelon under saline and non saline soil-water deficit. Irrig. Sci. 16 : 15-21.
Mendlinger, S. 1994. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon. Sci. Hort. 57 : 41-49.
Mendlinger, S. and M. Fossen. 1993. Flowering, vegetative growth, yield, and fruit-quality in muskmelons under saline conditions. J. Am. Soc. Hort. Sci. 118 : 868-872.
Mendlinger, S. and D. Pasternak. 1992. Effect of time of salinitation on flowering, yield and fruit quality factors in melon, Cucumis melo L. J. Hort. Sci. 67 : 529-534.
Moftah, A. E. and B. E. Michel. 1987. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves. Plant Physiol. 83 : 238-240.
Montero, E., C. Cabot, C. Poschenrieder, and J. Barcelo. 1998. Relative importance of osmotic-stress and ion-specific effects on ABA-mediated inhibition of leaf expansion growth in Phaseolus vulgaris. Plant Cell Environ. 21 : 54-62.
Munns, R.. 1993. Physiological processes limiting plant growth in saline sails:some dogmas and hypotheses. Plant Cell Environ. 16 : 15-24.
Nascimento, W. M. and S. H. West. 1999. Muskmelon transplant production in response to seed priming. Hor. Tech. 9(1) : 53-55.
Nascimento, W. M. and West, S. H. 1998. Priming and seed orientation affect emergence, seedcoat adherence and seedling development of muskmelon transplants. Hort. Sci. 33 : 847-848.
Niu, X., R. A. Bressan, P. M. Hasegawa, and J. M. Pardo. 1995. Ion homeostasis in NaCl stress environments. Plant Physiol. 109 : 735-742.
Nukaya, A., M. Masui, and A. Ishida. 1984. Salt tolerance of muskmelon as affected by diluted sea water applied at different growth stages in nutrient solution culture. J. Jpn. Soc. Hort. Sci. 53 : 168-175.
Pérez-Alfocea, F., M. E. Balibrea, J. J. Alarcón, and M. C. Bolarín. 2000. Composition of xylem phloem exudates in relation to the salt-tolerance of domestic and wild tomato species. J. Plant Nutr. 156 : 367-374.
Parera, C. A. and D. J. Cantliffe. 1994. Presiwing seed priming. Hort. Rev. 16 : 109-141.
Parera, C. A., P. Qiao, and D. J. Cantliffe. 1993. Enhanced celery germination at stress temperature via solid matrix priming. Hort. Sci. 28(1) : 20-22.
Parida, A. K., A. B. Das, B. Mittra. 2004. Effects of salt on growth, ion accumulation photosynthesis and leaf anatomy of the mangrove, Bruguiera parviflora. Trees-Struct. Funct. 18 : 167-174.
Passam, H. C. and D. Kakouriotis. 1994. The effects of osmoconditioning on the germination, emergence and early plant growth of cucumber under saline conditions. Sci. Hor. 57 : 233-240.
Powell, A. A. and S. Mattews. 1981. A physiological explanation for solute leakage from dry pea embryos during imbibition. J. Exp. Bot. 32 : 1045-1050.
Promial, K. and S. Kumar. 2000. Vigna radiate seed germination under salinity. Bio. Plantarum 43(3) : 423-426.

Ruiz, D., V. Martinez, and A. Cerda. 1999. Demarcating specific ion (NaCl, Cl -, Na+) and osmotic effects in response of two citrus rootstocks to salinity. Sci. Hort. 80 : 213-224.
Ramagopal, S.. 1990. Inhibition of seed germination by salt and its subsequent effect on embryonic protein synthesis in barley. J. Plant Physiol. 136 : 621-625.
Rehman, S., P. J. C. Harris, and W. F. Bourne. 1998. Effects of presowing treatment with calcium salts, potassium salts, or water on germination and salt tolerance of Acacia seeds. J. Plant Nutr. 21 : 277-285.
Rickauer M. and Tanner W. 1986. Effects of Ca2+ on amino acid transport and accumulation in roots of Phaseolus vulgaris. Plant Physiol. 82 : 41-46.
Rogers, M. E., C. L. Noble, G. M. Halloran, and M. E. Nicolas. 1995. The effect of NaCl on the germination and early seedling growth of white clover (Trifolium repens L.) populations selected for high and low salinity tolerance. Seed Sci. Tech. 23 : 277-278.
Rowse, H. R. 1995. Drum priming-A non-osmotic method of priming seeds. Seed Sci. Tech. 28 : 391-401.
Samuel, M. and P. Dov. 1992. Screening for salt tolerance in melons. Hort Sci. 27(8) : 905-907.
Santa-Cruz, A., M. Acosta, Rus A., and M. C. Bolarin. 1999. Short-term salt tolerance mechanisms in differentially salt tolerant tomato species. Plant Physical Biochem. 37(1) : 65-71.
Shani, U. and L.M. Dudley. 2001. Field studies of crop response to water and salt stress. J. Am. Soc. Soil Sci., 65 : 1522-1528.
Shannon, M., G. Bohn, and J. McCreight. 1984. Salt tolerance among muskmelon genotypes during seed emergence and seedling growth. Hort. Sci. 19 : 828-830.
Shannon, M. and L. Francois. 1978. Salt tolerance of three muskmelon cultivars. J. Am. Soc. Hort. Sci. 103 : 127-130.
Silberbush, M. 2001. Potassium influx to roots of two sorghum genotypes grown under saline conditions. J. Plant Nutr. 24 : 1035-1045.
Simon, E. W.. 1974. Phospholipids and plant membrane permeability. New Phytol. 73 : 377-420.
Sivritepe, H. Ö., N. Sivritepe, A. Eriş, and E. Turhan. 2005. The effects of NaCl pre-treatments on salt tolerance of melons grown under long-term salinity Sci. Hort. 106 : 568-581.
Sivritepe, N., H. Ö. Sivritepe, and A. Eriş. 2003. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Sci. Hort. 97 : 229-237.
Storey, R.. 1995. Salt tolerance, ion relations and the effect of root medium on the response of citrus to salinity. Aust. J. Plant Physiol. 22 : 101-114.
van Bilsen, D. G. J. L., F. A. Hoekstra, L. M. Crowe, and J. H. Crowe. 1994. Altered phase behavior in membranes of aging dry pollen may cause imbibitional leakage. Plant Physiol. 104 : 1193-1199.
Van Hoorn, J. W.. 1991. Development of soil salinity during germination and early seedling growth and its effect on several crops. Agric. Water Manage. 20:17-28.
Waisel, Y.. 1972. Biology of halophytes. Academic Press. New York.
Wannamker, M. J. and L. M. Pike. 1987. Onion response to various salinity levels. Amer. Soci Hort. Sci. 112 : 49-52.
Wiebe, H. J. and T. Muhyaddin. 1987. Improvement of emergence by osmotic seed treatments in soil of high salinity. Acta Hort. 198 : 91-100.
Yupsanis, T., M. Moustakas, and K. Domiandou. 1994. Protein phosphorylation dephosphorylation in alfalfa seeds germinating under salt stress. J. Plant Physiol. 143 : 234-240.
Zapata, P. J., M. Serrano, M. T. Pretel, A. Amoros, and M. A. Botella. 2003. Changes in ethylene evolution and polyamine profiles of seedlings of nine cultivars of Lactuca sativa L. in response to salt stress during germination. Plant Sci. 164 : 557-563.
Zheng, G. H.. 1991. Physiological, biochemical and ultrastructural aspects ofimbibitional chilling injury in seeds: a review of work carried out at the Beijing botanical garden. Seed Sci. Res. 1 : 127-134.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top