(34.237.124.210) 您好!臺灣時間:2021/03/02 06:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳履安
研究生(外文):Lu-An Chen
論文名稱:磷化銦鎵/砷化銦鎵/砷化鎵雙層通道擬晶性高電子遷移率電晶體之研究
論文名稱(外文):Investigation of InGaP/InGaAs/GaAs Double Channel Pseudomorphic High Electron Mobility Transistors (DCPHEMTs)
指導教授:鄭岫盈
指導教授(外文):Shiou-Ying Cheng
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:85
中文關鍵詞:雙層通道擬晶性電子遷移率電晶體
外文關鍵詞:Double Channel、Pseudomorphic、HEMT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:96
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們將磷化銦鎵/砷化銦鎵/砷化鎵雙層通道擬晶性高電子遷移率電晶體之三層平面摻雜層進行系統化的研究及探討,其中以三層平面摻雜層和蕭特基能障層之厚度做為調變元件性能的主要因素,我們將利用SILVACO Atlas模擬軟體,對元件做詳細的計算和研究,包含著能帶圖、濃度分佈、直流及交流特性曲線圖等等。由於我們使用雙層通道的結構和利用大能隙之磷化銦鎵材料作為蕭特基接觸層及緩衝層,可使元件得到良好的載子侷限能力、通道載子均勻分佈和良好的蕭特基特性等優點。最後,我們也成功的將實驗製程和量測,並且在實驗結果與理論模擬是互相吻合的。因此,由結果得知,雙通道擬晶性高電子遷移率因利用適當的調變平面摻雜層可得到更好的元件特性,以有助於元件在微波電路之應用。
In this thesis, the device characteristics of InGaP/InGaAs/GaAs double channel pseudomorphic high electron mobility transistors (DCPHEMTs) with triple delta-doped sheets are systematically investigated. The triple delta-doped sheets densities and Schottky barrier layer thickness are important factors to affect device performance. Based on a two-dimensional simulator of Atlas, we report on detailed calculations and studies including energy band diagrams, distribution of carrier, DC and microwave performance. Due to the employed InGaAs DC structure and Schottky and buffer behaviors of InGaP “insulator”, good pinch-off and saturation characteristics, high current drivability, large transconductance and excellent microwave performance are obtained. For comparison, a practical DCPHEMT with good device performance is fabricated successfully. Generally, good agreements between experimental results and theoretical simulations are found. Therefore, it is concluded that the DCPHEMT with appropriate triple delta-doped sheets densities offers the promise for microwave device applications.
Contents
Abstract …………………………………………………………………………... i
Table Captions
Figure Captions
Chapter 1. Introduction ……………………………………………………... 1
1-1. Thesis Organizations ………………………………………………... 2
Chapter 2. Overview of Ⅲ-Ⅴ Field Effect Transistor
2-1. Introduction …………………………………………………………. 4
2-2. Development of HEMT Structure …………...……………………..… 5
2-3. Summary ……………………………………………………………. 10
Chapter 3. Investigation of InGaP/InGaAs Double Channel Pseudomorphic High Electron Mobility Transistors
3-1. Introduction ………………………………………………….……… 11
3-2. Model and Device Structure …………………………………..……. 13
3-3. Simulated Results and Discussion ……………………….….…….... 14
3-3-1. The Influence of Triple Delta-Doped Sheets Densities …………...... 14
3-3-2. The Influence of Schottky Barrier Layer Thickness (t) .…….……... 20
3-3-3. Comparison between Simulated and Practical Devices ……………… 22
3-4. Summary ……………………………………………………………. 23
Chapter 4. Conclusion and Prospect
4-1. Conclusion …………………………………………………………. 25
4-2. Prospect …………………………………………………………….. 26
References ………………………………………………………………………… 27
Tables
Figures
Publication List
[1]K. Ikeda, T. Tanaka, M. Ishii, A. Ito, “GaAs-(Ga,Al) As double heterostructure light emitting diode,” IEEE Transactions on Electron Devices, vol. 22 , pp. 799-801, 1975.
[2]O. Wada, T. Sanada, T. Sakurai, “Monolithic integration of an AlGaAs/GaAs DH LED with a GaAs FET driver,” IEEE Electron Device Letters, vol. 3, pp. 305-307, 1982.
[3]G. C. Camperi, M. Hargis, N. Jokerst, M. Allen, “Alignable epitaxial liftoff of GaAs materials with selective deposition using polyimide diaphragms,” IEEE Photonics Technology Letters, vol. 3, pp. 1123- 1126, 1991.
[4]C. C. Wu, S. D. Theiuss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LEDs and amorphous Si TFTs onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett., vol. 18, pp. 609-612, 1997.
[5]H. Kim, H. Yang, C. Huh, S. W. Kim, S. J. Park, and H. Hwang, “Electromigration-induced failure of GaN multi-quantum well light emitting diode,” Electron. Lett., vol. 36, pp. 908-910, 2000.
[6]R. F. Carson, W. W. Chow, “Neutron effects in high-power GaAs laser diodes,” IEEE Transactions on Nuclear Science, vol. 36, pp. 2076- 2082, 1989.
[7]M. A. Haase, J. Qiu, J. M. DePuydt, H. Cheng, “Blue-green laser diodes made from II-VI semiconductors,” IEEE Transactions on Electron Devices, vol. 38, pp. 2708, 1991.
[8]H. Horie, H. Ohta, T. Fujimori, “Reliability improvement of 980-nm laser diodes with a new facet passivation process,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 5, pp. 832-838, 1999.
[9]S. Honda, T. Miyake, T. Ikegami, K. Yagi, Y. Bessho, R. Hiroyama, M. Shone, and M. Sawada, “Low threshold 650 nm band real refractive index-guided AlGaInP laser diodes with strain-compensated MQW active layer,” Electron. Lett., vol. 36, pp. 1284-1286, 2000.
[10]D. Jang, J. Shim, J. Lee, and Y. Eo, “Asymmetric output characteristics in 1.3 μm spot-size converted laser diodes,” IEEE J. Quantum Electron., vol. 37, pp. 1611-1617, 2001.
[11]J. L. Vorhaus, W. Fabian, P. B. Ng, Y. Tajima, “Dual-gate GaAs FET switches,” IEEE Transactions on Electron Devices, vol. 28, pp.204- 211, 1981.
[12]W. C. Liu, D. F. Guo, and Y. S. Lee, “A confinement-collector GaAs switching device prepared by molecular beam epitaxy,” Jpn. J. Appl. Phys., vol. 30, pp. 1937-1939, 1991.
[13]W. C. Liu and D. F. Guo, “A new GaAs switching device with double-confinement-collector structure,” Solid-State Electron., vol. 35, pp. 501-504, 1992.
[14]W. C. Hsu, D. F. Guo, W. C. Liu, and W. S. Lour, “Characteristics of a GaAs-InGaAs delta-doped quantum-well switch,” J. Appl. Phys., vol. 73, pp. 8615-8617, 1993.
[15]W. C. Liu, D. F. Guo, S. R. Yih, J. T. Liang, L. W. Laih, and G. M. Lyuu, “GaAs-InGaAs quantum-well resonant-tunneling switching device grown by molecular beam epitaxy,” Appl. Phys. Lett., vol. 64, pp. 2685-2687, 1994.
[16]H. H. Lin, and S. C. Lee, “Super-gain AlGaAs/GaAs heterojunction bipolar transistor using an emitter edge-thinning design,” Appl. Phys. Lett., vol. 47, pp. 839-841, 1985.
[17]S. S. Lu, and C. C. Hung, “High-current-gain Ga0.51In0.49P/GaAs heterojunction bipolar transistor grown by gas-source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 13, pp. 214-216, 1992.
[18]W. C. Liu and W. S. Lour, “An improved heterostructure-emitter bipolar transistor (HEBT),” IEEE. Electron Device Lett., vol. 12, pp. 474-476, 1991.
[19]W. C. Liu, D. F. Guo, and W. S. Lour, “AlGaAs/GaAs double hetrostructure-emitter bipolar transistor (DHEBT),” IEEE Trans. Electron Device, vol. 39, pp. 2740-2744, 1992.
[20]J. H. Tsai, S. Y. Cheng, L. W. Laih, and W. C. Liu, “AlGaAs/InGaAs/GaAs heterostructure-emitter and heterostructure-base transistor (HEHBT),” Electron. Lett., vol. 32, pp. 1720-1721, 1996.
[21]W. C. Liu, S. Y. Cheng, J. H. Tsai, P. H. Lin, J. Y. Chen, and W. C. Wang, “InGaP/GaAs superlattice-emitter resonant tunneling bipolar transistor (SE-RTBT),” IEEE Electron Device Lett., vol. 18, pp. 515-517, 1997.
[22]W. C. Liu, S. Y. Cheng, W. L. Chang, H. J. Pan, and Y. H. Shie, “Application of δ-doped wide-gap collector structure for high-breakdown and low-offset voltage transistors,” Appl. Phys. Lett., vol. 73, pp. 1397-1399, 1998.
[23]W. C. Liu, H. J. Pan, W. C. Wang, K. B. Thei, K. W. Lin, K. H. Yu, and C. C. Cheng, “Temperature-dependent study of a lattice-matched InP/InGaAlAs heterojunction bipolar transistor,” IEEE Electron Device Lett., vol. 21, pp. 524-527, 2000.
[24]S. I Fu, S. Y. Cheng, and W. C. Liu, “Characteristics of InGaP/GaAs heterojunction bipolar transistors (HBTs) with sulfur treatments,” Superlattices Microstruct, vol. 39, pp. 436-445, 2006.
[25]S. I Fu, S. Y. Cheng, T. P. Chen, P. H. Lai, C. W. Hung, K. Y. Chu, L. Y. Chen, and W. C. Liu, “Further suppression of surface-recombination of an InGaP/GaAs HBT by conformal passivation,” IEEE Trans. Electron Devices, vol. 53, pp. 2901-2907, 2006.
[26]W. Schockley , “Circuit elements utilizing semiconductive material,” U. S. Patent, N. 2569, p. 347, 1951.
[27]S. Brodjo, T. J. Riley, and G. T. Wright, “The heterojunction transistor and the space charge limited triode,” Br. J. Appl. Phys., vol. 16, p. 133, 1965.
[28]W. P. Dumke, J. M. Woodall, and V. L. Rideout, “GaAs-AlGaAs heterojunction transistor for high frequency operation,” Solid-State Electron., vol. 15, pp. 1339-1343, 1972.
[29]H. Kroemer, “Heterostructure bipolar transistors and integrated circuits,” IEEE Proc., vol. 70, pp. 13-25, 1982.
[30]S. Brown, U. K. Mishra, C. S. Chou, C. E. Hooper, M. A. Melendes, M. Thompson, L. E. Larson, S. E. Rosenbaum, and M. J. Delaney, “AlInAs-GaInAs HEMT’s utilizing low-temperature AlInAs buffers grown by MBE,” IEEE Electron Device Lett., vol. 10, pp. 565-567, 1989.
[31]D. R. Greenberg, J. A. D. Alamo, J. P. Harbison, and L. T. Florez, “A pseudomorphic AlGaAs/n+-InGaAs metal-insulator-doped channel FET for broad-band, large-signal applications,” IEEE Electron Device Lett., vol. 12, pp. 436-438, 1991.
[32]W. C. Hsu, H. M. Shieh, C. L. Wu, and T. S. Wu, “A high performance symmetric double δ-doped GaAs/InGaAs/GaAs pseudomorphic HFET’s grown by MOCVD,” IEEE Trans. Electron Devices, Vol. 41, pp. 456-457, 1994.
[33]L. W. Laih, W. S. Lour, J. H. Tsai, W. C. Liu, C. Z. Wu, K. B. Thei and R. C. Liu, “Characteristics of metal-insulator-semiconductor (MIS) like In0.2Ga0.8As/GaAs doped-channel structure,” Solid-State Electron., vol. 39, pp. 15-20, 1995.
[34]C. Z. Wu, L. W. Laih, and W. C. Liu, “Study of InGaAs/GaAs metal-insulator-semiconductor-like heterostructure field-effect transistor,” Solid-State Electron., vol. 39, pp. 791-795, 1996.
[35]W. S. Lour, W. L. Chang, W. C. Liu, Y. H. Shie, H. J. Pan, J. Y. Chen, and W. C. Wang, “Application of selective removal of mesa sidewalls for high-breakdown and high-linearity Ga0.51In0.49P/In0.15Ga0.85As pseudomorphic transistors,” Appl. Phys. Lett., vol. 74, pp. 2155-2157, 1999.
[36]W. C. Liu, K. H. Yu, R. C. Liu, K. W. Lin, K. P. Lin, C. H. Yen, C. C. Cheng, and K. B. Thei, “Investigation of temperature-dependent characteristics of an n+-InGaAs/n-GaAs composite doped channel (CDC) heterostructure field-effect transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 2677-2683, 2001.
[37]S. Nuttinck, E. Gebara, J. Laskar, M. Harris, “High-frequency noise in AlGaN/GaN HFETs,” IEEE Microwave and Wireless Components Letters, vol. 13, pp. 149-151, 2003.
[38]Z. Yang, A. Koudymov, V. Adivarahan, J. Yang, G. Simin, M. A. Khan, “High-power operation of III-N MOSHFET RF switches,” IEEE Microwave and Wireless Components Letters, vol. 15, pp. 850-852, 2005.
[39]P. H. Lai, S. I Fu, Y. Y. Tsai, C. H. Yen, H. M. Chuang, S. Y. Cheng, W. C. Liu, “Thermal-stability improvement of a sulfur-passivated InGaP/InGaAs/GaAs HFET,” IEEE Transactions on Device and Materials Reliability, vol. 6, pp. 52-59, 2006.
[40]R. D. Greenberg and J. A. D. Alamo, “Nonlinear source and drain resistances in recessed-gate heterostructure field-effect transistors,” IEEE Trans. Electron Devices, vol. 43, pp. 1304-1306, 1996.
[41]K. Yuan and K. Radhakrishnan, “High breakdown voltage In0.52Al0.48As/In0.53Ga0.47As metamorphic HEMT using InxGa1-xP graded buffer,” Indium Phosphide and Related Materials, pp. 161-164, 2002.
[42]W. C. Hsu, Y. J. Chen, C. S. Lee, T. B. Wang, Y. S. Lin, and C. L. Wu, “High-temperature thermal stability performance in δ-doped In0.425Al 0.575As/In0.65Ga0.35As metamorphic HEMT,” IEEE, Electron Device Lett., vol. 26, pp. 59-61, 2005.
[43]M. B. Das and M. L. Roszak, “Design calculation for submicron gate-length AlGaAs/GaAs modulation-doped FET structures using carrier saturation velocity/charge-control model,” Solid-state Electron., vol. 28, pp. 997-1005, 1985.
[44]P. O’Connor, A. Dori, M. Feuer, and R. Vounkx, “Gold-germanium-based ohmic contacts to the two-dimensional electron gas at selectively doped semiconductor heterointerfaces,” IEEE Trans. Electron. Devices, vol. 34, pp. 765-771, 1987.
[45]ATLAS, 2-D semiconductor device simulator, version 5.3.66.A SILVACO Int., Santa Clara, CA, USA, 2002.
[46]E. F. Schubert, J. E. Cunningham, and W. T. Tsang, “Electron-mobility enhancement and electron-concentration enhancement in δ-doped n-GaAs at T=300 K,” Solid State Commun., vol. 63, pp. 591-594, 1987.
[47]N. Moll, M. R. Heuschen, and A. F. Colbrie, “Pulse-doped AlGaAs/InGaAs pseudomorphic MODFET’s,” IEEE Trans. Electron Devices, vol. 35, pp. 879-886, 1988.
[48]G. Gillman, B. Vinter, E. Barbier, and T. Tardella, “Experimental and theoretical mobility of electrons in delta-doped GaAs,” Appl. Phys. Lett., vol. 52, pp. 972-974, 1988.
[49]M. Tomizawa, T. Furuta, K. Yokoyama, and A. Yoshii, “Modeling for electron transport in AlGaAs/GaAs/AlGaAs double-heterojunction structures,” IEEE Trans. Electron Devices, vol. 36, pp. 2380-2385, 1989.
[50]Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, and Y. K. Chen, “Single- and double-heterojunction pseudomorphic In0.5(Al0.3Ga0.7)0.5P/In0.2Ga0.8As high electron mobility transistors grown by gas source molecular beam epitaxy,” IEEE Electron Device Lett., vol. 18, pp. 550-552, 1997.
[51]W. C. Liu, W. L. Chang, W. S. Lour, K. H. Yu, K. W. Lin, C. C. Cheng, and S. Y. Cheng, “Temperature-dependence investigation of a high-performance inverted delta-doped V-shaped GaInP/InxGa1-xAs/GaAs pseudomorphic high electron mobility transistor,” IEEE Trans. Electron Devices, vol. 48, pp. 1290-1296, 2001.
[52]H. M. Chuang, S. Y. Cheng, P. H. Lai, X. D. Liao, C. Y. Chen, C. H. Yen, R. C. Liu, and W. C. Liu, “Study of InGaP/InGaAs double doped channel heterostructure field-effect transistors (DDCHFETs),” Semicond. Sci. Technol., vol. 19, pp. 87-92, 2004.
[53]H. Kroemer, “Theory of a Wide-Gap Emitter for Transistors,” Proc. IRE, vol. 45, p. 1535, 1957.
[54]C. A. Mead, “Schottky Barrier Gate Filed effect transistor”, Proc. IEEE, vol. 55, pp. 307-308, 1966.
[55]L. Esaki and R. Tsu, Internal Report RC 2418, IBM Research, March 26, 1969.
[56]R. Dingle, H. L. Stromer, A. C. Gossard and W. Wiegmann, “High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface,” Appl. Phys. Lett., vol. 37, p. 805, 1978.
[57]T. Mirura, S. Hyamizu, T. Fuji and K. Nanbu “A New Field-Effect Transistor with Selective Doped GaAs/n-AlGaAs Heterojunctions”, Jap. J. Appl. Phys., vol.19, No. 5, L225, 1980.
[58]H. Hida, A. Okamoto, H. Toyoshima and K. Ohata, ” A high-current drivability i-AlGaAs/n-GaAs doped-channel MIS-Like FET (DMT),” IEEE Electron Device Lett, vol. 7, pp. 625-626, 1986.
[59]K. Ploog, M. Hauser and A. Fischer, Applied Physics A: Materials Science & Processing, pp 233-244, 1987.
[60]A. Ketterson, M. Moloney, W. T. Masselink, C. K. Peng, J. Klem, R. Fischer, W. Kopp, H. Morkoc, “High transconductance InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors,” IEEE Electron Device Lett., vol.6, pp.628- 630, 1985.
[61]K. Hirose, K. Ohata, T. Itoh, and M. Ogawa, “700 mS/mm 2DEGFETs Fabricated from High Electron Mobility MBE-Grown n-AlInAs/GaInAs Heterostructures,” Proc. GaAs and Related Compounds, pp.529-532, 1985.
[62]T. Henderson, M. I. Aksun, C. K. Peng., H. Morkoc, P. C. Chao, P. M. Smith, K. H. G., L. F. Lester, “Microwave performance of a quarter-micrometer gate low-noise pseudomorphic InGaAs/AlGaAs modulation-doped field effect transistor,” IEEE Electron Device Lett., vol.7, pp. 649-651, 1986.
[63]A. A. Ketterson, W. T. Masselink, J. S. Gedymin, J. Klem, C. K. Peng, W. F. Kopp., H. Morkoc, K. R. Gleason, “Characterization of InGaAs/AlGaAs pseudomorphic modulation-doped field-effect transistors,” IEEE Tran. Electron Device, vol.33, pp.564-571, 1986.
[64]J. M. Kuo, B. Calvic, and T. Y. Chang, “New Pseudomorphic MODFET Utilizing Ga0.47-uIn0.53+u/Al0.48+uIn0.52-u Heterostructures,” IEDM Tech. Dig., pp. 460-463, 1986.
[65]M. Takikawa, K. Joshin, “Pseudomorphic n-InGaP/InGaAs/GaAs high electron mobility transistors for low-noise amplifiers,” IEEE Electron Device Lett., vol.14 pp.406-408, 1993.
[66]B. Kim, R. J. Matyi, M. Wurtele, K. Bradshaw, M. A. Khatibzadeh, H. Q. Tserng, “Millimeter-wave power operation of an AlGaAs/InGaAs/GaAs quantum well MISFET,” IEEE Tran. Electron Devices, vol. 36, pp.2236-2242, 1989.
[67]P. Gurnik, R. Srnanek, D. S. McPhail, R. J. Chater, S. Fearn, L. Harmatha, P. Kordos, J. Geurts, T. Lalinsky, “Characterization of delta-doped GaAs grown by molecular beam epitaxy,” Electron Devices for Microwave and Optoelectronic Applications, pp.9-14, 2001.
[68]A. Ishibashi, K. Funato, Y. Mori, “Ultra-thin-channelled GaAs MESFET with double-doped layers,” Electron. Lett., vol. 24, pp.1034-1035, 1988.
[69]J. N. Burghartz, J. O. Plouchart, K. A. Jenkins, C. S. Webster, and M. Soyuer, “SiGe power HBT’s for low-voltage, high-performance RF applications,” IEEE Electron Device Lett., vol. 19, pp. 103-105, 1998.
[70]W. S. Lour, M. K. Tsai, K. C. Chen, Y. W. Wu, S. W. Tan, and Y. J. Yang, “Dual-gate InGaP/InGaAs pseudomorphic high electron mobility transistors with high linearity and variable gate-voltage swing,” Semicond. Sci. Technol., vol. 16, pp. 826-830, 2001.
[71]C. Younkyu, C. Y. Hang, S. Cai, Q. Yongxi, C. P. Wen, K. L. Wang, T. Itoh, “AlGaN/GaN HFET power amplifier integrated with microstrip antenna for RF front-end applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, pp. 653-659, 2003.
[72]S. F. Shams, C. C. McAndrew, I. S. Lim, and A. Zlotnicka, “SiGe HBT self-heating modeling and characterization from AC data,” in Proc. BCTM, pp.92-95, 2002.
[73]C. L. Wu, W. C. Hsu, H. M. Shieh, and M. S. Tsai, “An improved inverted δ-doped GaAs/InGaAs pseudomorphic heterostructure grown by MOCVD,” IEEE Electron Device Lett., vol. 15, pp. 330-332, 1994.
[74]K. W. Lin, K. H. Yu, W. L. Chang, C. C. Cheng, K. P. Lin, C. H. Yen, W. S. Lour, and W. C. Liu, “Characteristics and comparison of In0.49Ga0.51P/InGaAs single and double delta-doped pseudomorphic high electron mobility transistors,” Solid-State Electronic, vol. 45, pp. 309-314, 2001.
[75]H. M. Chuang, S. Y. Cheng, C. Y. Chen, X. D. Liao, R. C. Liu, and W. C. Liu, “Investigation of a new InGaP-InGaAs pseudomorphic double doped-channel heterostructure field-effect transistor (PDDCHFET),” IEEE Trans. Electron Devices, vol. 50, pp. 1717-1723, 2003.
[76]M. Meshkinpour, M. S. Goorsky, G. Chu, D. C. Streit, T. R. Block, and M. Wojtowicz, “Role of misfit dislocations on pseudomorphic high electron mobility transistors,” Appl. Phys. Lett., vol. 66, pp. 748-750, 1995.
[77]S. J. Jo, J. H. Kim, and J. I. Song, “Molecular beam epitaxy growth and characterization of InGaP/InGaAs pseudomorphic high electron mobility transistors (HEMTs) having a channel layer over critical layer thickness,” IEEE Trans. Electron Devices, vol. 49, pp. 354-360, 2002.
[78]G. W. Wang, Y. K. Chen, D. C. Radulescu, L. F. Eastman, “A high-current pseudomorphic AlGaAs/InGaAs double quantum-well MODFET,” IEEE Electron Device Letters, vol. 9, pp. 4-6, 1988.
[79]M. Borg, J. Grahn, S. Wang, A. Mellberg, and H. Zirath, “Vertical scaling of gate-to-channel distance for a 70 nm InP pseudomorphic HEMT technology,” in IPRM, pp 204-207, 2005.
[80]Y. S. Lin, S. S. Lu, and Y. J. Wang, “High-performance Ga0.51In0.49P/GaAs airbridge gate MISFET’s grown by gas-source MBE,” IEEE Trans. Electron Devices, vol. 44, pp 921-929, 1997.
[81]H. M. Shieh, W. C. Hsu, R. T. Hsu, C. L. Wu, and T. S. Wu, ” A High-Performance δ-Doped GaAs/InxGa1-xAs Pseudomorphic High Electron Mobility Transistor Utilizing a Graded InxGa1-xAs Channel,” IEEE Electron Device Letters, vol. 14, pp. 581-583, 1993
[82]W. C. Liu, W. L. Chang, W. S. Lour, S. Y. Cheng, Y. H. Shie, J. Y. Chen, W. C. Wang, and H. J. Pan, “Temperature-Dependent Investigation of a High-breakdown voltage and Low-Leakage Current Ga0.51In0.49 P/In0.15Ga0.85As Pseudomorphic HEMT,” IEEE Electron Device Letters, vol. 20, pp. 274-276, 1999.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔