|
1. Akyuz, A. and M. Sezer, 2003, “Chebyshev Polynomial Solutions of Systems of High-Order Linear Differential Equations with Variable Coefficients,” Applied Mathematics and Computation, Vol.144, pp.237-247. 2. Babuska, R., 1998, Fuzzy Modeling for Control, Kluwer, Boston. 3. Barnett, S., 1979, Matrix Methods for Engineers and Scientists, McGraw-Hill, New York. 4. Cao, Y. Y. and P. M. Frank, 2000, “Analysis and Synthesis of Nonlinear Time-Delay Systems via Fuzzy Control Approach”, IEEE Trans. on Fuzzy Systems, Vol.8, pp.200-211. 5. Cao, Y. Y. and P. M. Frank, 2001, “Stability Analysis and Synthesis of Nonlinear Time-Delay Systems via Linear Takagi-Sugeno Fuzzy Models”, Fuzzy Sets and Systems, Vol.124, pp.213-229. 6. Chang, W. J. and W. Chang, 2006, “Model-Based Fuzzy Controller Design for Time-Delay Affine Takagi-Sugeno Fuzzy Models via ILMI Algorithm”, J. of Intelligent and Fuzzy Systems, Vol.17, pp.663-647. 7. Chen, B. and X. Liu, 2005, “Delay-Dependent Robust Control for T-S Fuzzy Systems with Time Delay”, IEEE Trans. on Fuzzy Systems, Vol.13, pp.544-556. 8. Chen, B., X. Liu and S. Tong, 2008, “Robust Fuzzy Control of Nonlinear Systems with Input Delay”, Chaos, Solitons and Fractals, Vol.37, pp.894-901. 9. Chen, B. S., C. S. Tseng and H. J. Uang, 1999, “Robustness Design of Nonlinear Dynamic Systems via Fuzzy Linear Control”, IEEE Trans. on Fuzzy Systems, Vol.7, pp.571-585. 10. Chiang, W. L., C. W. Chen, K. Yeh, M. Y. Liu and Z. Y. Chen, 2002, “A New Approach to Stability Analysis for Nonlinear Time-Delay Systems”, Int. J. of Fuzzy Systems, Vol.4, pp.735-737. 11. Chou, C. C., H. J. Uang and C. S. Tseng, 2006, “Mixed Fuzzy Control Design of Nonlinear Systems with Time Delays”, Proc. of the 14th National Conference on Fuzzy Theory and Its Applications, Taiwan, pp.A131-A136. 12. Chou, J. H., 1987, “Application of Legendre Series to the Optimal Control of Integrodifferential Equations”, Int. J. of Control, Vol.45, pp.269-277. 13. Chou, J. H. and I. R. Horng, 1985, “Shifted Chebyshev Series Analysis of Linear Optimal Control Systems Incorporating Observers”, Int. J. of Control, Vol.41, pp.129-134. 14. Chou, J. H. and I. R. Horng, 1986a, “State Estimation Using Continuous Orthogonal Functions”, Int. J. of Systems Science, Vol.17, pp.1261-1267. 15. Chou, J. H. and I. R. Horng, 1986b, “Shifted-Chebyshev-Series Analysis and Identification of Time-Varying Bilinear Systems”, Int. J. of Control, Vol.43, pp.129-137. 16. Chou, J. H. and I. R. Horng, 1987a, “Optimal Control of Deterministic Systems Described by Integrodifferential Equations via Chebyshev Series”, ASME J. of Dynamic Systems, Measurement and Control, Vol.109, pp.345-348. 17. Chou, J. H. and I. R. Horng, 1987b, “New Approach to the Optimal Control of Delay Systems via Chebyshev Series”, J. of the Franklin Institute, Vol.323, pp.95-102. 18. Chou, J. H., W. H. Liao and J. J. Li, 1998, “Application of Taguchi-Genetic Method to Design Optimal Grey-Fuzzy Controller of a Constant Turning Force Systems”, Proc. of the 15th CSME Annual Conference, Taiwan, pp.31-38. 19. Datta, K. B. and B. M. Mohan, 1995, Orthogonal Functions in Systems and Control, World Scientific, Singapore. 20. Elbarbary, E. M. E. and M. El-Kady, 2003, “Chebyshev Finite Difference Approximation for the Boundary Value Problems”, Applied Mathematics and Computation, Vol.139, pp.513-523. 21. Er, M. J. and D. H. Lin, 2002, “A New Approach for Stabilizing Nonlinear Systems with Time Delays”, Int. J. of Intelligent Systems, Vol.17, pp.289-302. 22. Farinwata, S. S., D. Filev and R. Langari, 2000, Fuzzy Control: Synthesis and Analysis, John Wiley and Sons, Chichester. 23. Friedland, B., 1986, Control System Design: An Introduction to State-Space Methods, McGraw-Hill, New York. 24. Gahinet, P., A. Nemirovski, A. J. Laub and M. Chilali, 1995, LMI Control Toolbox, The Math Works Inc., Massachusetts. 25. Gen, M. and R. Cheng, 1997, Genetic Algorithms and Engineering Design, John Wiley and Sons, New York. 26. Goodwin, G. C., S. F. Graebe and M. E. Salgado, 2001, Control System Design, Prentice-Hall, New Jersey. 27. Guan, X. P. and C. L. Chen, 2004, “Delay-Dependent Guaranteed Cost Control for T-S Fuzzy Systems with Time Delays”, IEEE Trans. on Fuzzy Systems, Vol.12, pp.236-249. 28. Ho, W. H. and J. H. Chou, 2004, “Solutions of Takagi-Sugeno Fuzzy-Model-Based Dynamic Equations via Orthogonal Functions”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E87-A, pp.3439-3442. 29. Ho, W. H. and J. H. Chou, 2005, “Solutions of Time-Varying TS-Fuzzy-Model-Based Dynamic Equations Using Shifted Chebyshev Series Approach”, Int. J. of Systems Science, Vol.36, pp.767-776. 30. Ho, W. H. and J. H. Chou, 2007, “Design of Optimal Controllers for Takagi-Sugeno Fuzzy Model Based Systems”, IEEE Trans. on Systems, Man and Cybernetics, Part A, Vol.37, pp.329-339. 31. Hou, Y. Y., T. L. Liao, C. H. Lien and J. J. Yan, 2006, “Decentralized Guaranteed Cost Control for Uncertain Fuzzy Large-Scale Systems with Time-Varying Delays”, Engineering Intelligent Systems for Electrical Engineering and Communications, Vol.14, pp.213-223. 32. Hsieh, C. H. and J. H. Chou, 2004, “Analysis and Optimal Control of Pulse Width Modulation Feedback Systems”, Proc. of Instn. Mech. Engrs., Part I: J. of Systems and Control Engineering, Vol.218, pp.277-286. 33. Jaddu, H., 2002, “Spectral Method for Constrained Linear-Quadratic Optimal Control”, Mathematics and Computers in Simulation, Vol.58, pp.159-169. 34. Jiang, X. and Q. L. Han, 2007, “On Guaranteed Cost Fuzzy Control for Nonlinear Systems with Interval Time-Varying Delay”, IET Control Theory and Applications, Vol.1, pp.1700-1710. 35. Li, D. Q., 2005, “Optimal Fuzzy Quaranteed Cost Control for Delta-Operator Based Nonlinear Systems,” J. of Systems Engineering and Electronics, Vol.27, pp.883-888. 36. Li, Z., 2006, Fuzzy Chaotic Systems: Modeling, Control and Applications, Springer, Berlin. 37. Nagurka, M. L. and S. K. Wang, 1993, “A Chebyshev-Based State Representation for Linear Quadratic Optimal Control”, ASME J. of Dynamic Systems, Measurement and Control, Vol.115, pp.1-6. 38. Nise, N. S., 2000, Control Systems Engineering, John Wiley and Sons, New York. 39. Ovaska, S. J., 2005, Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing, IEEE Press, New Jersey. 40. Pacheco, R. P. and V. Steffen Jr., 2002, “Using Orthogonal Functions for Identification and Sensitivity Analysis of Mechanical Systems”, J. of Vibration and Control, Vol.8, pp.993-1021. 41. Park, P. G., S. S. Lee and D. J. Choi, 2003, “State-Feedback Stabilization for Nonlinear Time-Delay Systems: A New Fuzzy Weighting-Dependent Lyapunov-Krasovskii Functional Approach”, Proc. of the 42nd IEEE Conference on Decision and Control, Hawaii, pp.5233-5238. 42. Patra, A. and G. P. Rao, 1996, General Hybrid Orthogonal Functions and Their Applications in Systems and Control, Springer-Verlag, Berlin. 43. Rao, S. S., 1995, Mechanical Vibrations, Addison-Wesley, New York. 44. Roberts, A. W. and D. E. Varberg, 1973, Convex Functions, Academic Press, New York. 45. Shin, H., E. Kim and M. Park, 2003, “The State Feedback Control Based on Fuzzy Observers for T-S Fuzzy Systems with Unknown Time-Delay”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E86-A, pp.2333-2339. 46. Song, C. and T. Chai, 2005, “Comment on Discrete-Time Optimal Fuzzy Controller Design: Global Concept Approach,” IEEE Trans. on Fuzzy Systems, Vol.13, pp.285-286. 47. Taguchi, G., S. Chowdhury and S. Taguchi, 2000, Robust Engineering, McGraw-Hill, New York. 48. Takagi, T. and M. Sugeno, 1985, “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Trans. on Systems, Man and Cybernetics, Vol.15, pp.116-132. 49. Tanaka, K. and H. O. Wang, 2001, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley and Sons, New York. 50. Tong, S. C., T. Wang, Y. P. Wang and J. T. Tang, 2004, Design and Stability Analysis of Fuzzy Control Systems, Science Press, Beijing. 51. Tsai, J. T., T. K. Liu and J. H. Chou, 2004, “Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization”, IEEE Trans. on Evolutionary Computation, Vol.8, pp.365-377. 52. Wang, R. and J. Pan, 2007, “Delay-Dependent LMI Conditions for Stability and Stabilization of T-S Fuzzy Systems with Time-Delay”, Proc. of the 26th Chinese Control Conference, Hunan, pp.416-419. 53. Weinmann, A., 1991, Uncertain Models and Robust Control, Springer-Verlag, Hong Kong. 54. Wu, Y., 2000, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York. 55. Yoneyama, J., 2008, “Robust Stability and Stabilizing Controller Design of Fuzzy Systems with Discrete and Distributed Delays”, Information Sciences, Vol.178, pp.1935-1947. 56. Yu, L., 2002, Robust Control: Linear Matrix Inequality Approach, Tsinghua University Press, Beijing. 57. Zhang, H., D. Yang and T. Chai, 2007, “Guaranteed Cost Networked Control for T-S Fuzzy Systems with Time Delays”, IEEE Trans. on Systems, Man and Cybernetics, Part C, Vol.37, pp.160-172. 58. Zhang, H., Y. Wang and D. Liu, 2008, “Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems with Multiple Time Delays”, IEEE Trans. on Systems, Man and Cybernetics, Part B, Vol.38, pp.126-140. 59. Zheng, K., J. M. Xu and L. Yu, 2004, “Takagi-Sugeno Model-Based Optimal Guaranteed Cost Fuzzy Control for Inverted Pendulums”, J. of Control Theory and Applications, Vol.21, pp.703-708. 60. Zhu, B. Y., Q. L. Zhang and X. F. Zhang, 2005, “Decentralized Robust Guaranteed Cost Control for Uncertain T-S Fuzzy Interconnected Systems with Time Delays”, Int. J. of Information and Systems Sciences, Vol.1, pp.73-88.
|