跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許明仁
研究生(外文):Ming-Ren Hsu
論文名稱:整合式計算設計法於模糊時延控制系統之應用研究
論文名稱(外文):Design of TS-Fuzzy-Model-Based Time-Delay Control Systems Using an Integrative Computational Method
指導教授:周至宏周至宏引用關係劉東官劉東官引用關係
指導教授(外文):Jyh-Horng ChouTung-Kuan Liu
學位類別:博士
校院名稱:國立高雄第一科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:103
中文關鍵詞:正交函數計算法Takagi-Sugeno (TS) 模糊模型時延穩定二次最佳有限時間平行分配補償田口基因演算法線性矩陣不等式時延依賴
外文關鍵詞:orthogonal-functions approach (OFA)Takagi-Sugeno (TS) fuzzy-model-basedtime-delaystable and quadratic-optimalfinite-horizonparallel-distributed-compensation (PDC)hybrid Taguchi-genetic algorithm (HTGA)linear matrix inequalities (LMIs)delay-dependent
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文首先提出一種新的正交函數計算法來求解Takagi-Sugeno (TS) 模糊模型動態時延方程式。所提出的新方法,不需經由複雜的微分與積分計算,僅包含矩陣代數的運算,因此有助於電腦的運算過程可簡易並快速地完成,同時也可降低運算的複雜度。然後,舉一數值例來驗證所提出之正交函數計算法的有效性。接下來,使用正交函數計算法將TS模糊模型動態時延控制系統的穩定二次有限時間最佳平行分配補償控制的設計問題,轉換成由代數方程式型態來表示的靜態最佳化問題,而在論文中之二次有限時間積分的性能指標,同樣也以正交函數計算法轉換成矩陣代數的型式,如此可簡化設計的複雜度,也有助於後續田口基因演算法的應用,並配合由線性矩陣不等式技巧所推導出的時延依賴穩定充分條件,共同來解決TS模糊模型動態時延控制系統的穩定二次有限時間最佳平行分配補償控制器的設計問題。文中也將針對上述的穩定二次有限時間最佳平行分配補償控制器的設計問題,舉出實例模擬說明,所提出之新設計方法的應用可行性。最後,針對時變TS模糊模型動態時延控制系統之穩定二次有限時間最佳模糊平行分配補償控制器設計問題,應用凸集合的概念與線性矩陣不等式技巧,推導出時延依賴穩定充分條件,再與正交函數計算法和田口基因演算法結合,在二次有限時間積分性能指標最小化的控制目標下,設計時變TS模糊模型動態時延控制系統的穩定二次最佳模糊平行分配補償控制器,並舉一設計例,來驗證本文所提出之設計方法的應用情形。
In this dissertation, the orthogonal-functions approach (OFA) is first proposed to solve the Takagi-Sugeno (TS) fuzzy-model-based time-delay dynamic equations. The new method simplifies the procedure of solving the TS-fuzzy-model-based time-delay dynamic equations (TSFMTDE) into the successive solution of a system of recursive formulae only involving the matrix algebra. The new proposed approach is non-iterative, non-differential, non-integral, straightforward, and well-adapted to the computer implementation. The computational complexity can therefore be reduced remarkably. An illustrated numerical example is given in order to demonstrate the availability of the presently proposed method. Next, for the finite-horizon optimal control problem of the TS-fuzzy-model-based time-delay control systems, by integrating the delay-dependent stabilizability condition, the OFA, and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is presented to design the stable and quadratic-optimal parallel-distributed-compensation (PDC) controllers. In this dissertation, the delay-dependent stabilizability condition is proposed in terms of linear matrix inequalities (LMIs). The control objective of quadratic optimal fuzzy PDC controllers is to minimize a quadratic integral performance index, where the quadratic integral performance index is also converted into the algebraic form by using the OFA. Based on the OFA, the stable and quadratic-optimal PDC control problem for the TS-fuzzy-model-based time-delay control systems is replaced by a static parameter optimization problem represented by the algebraic equations with constraint of LMI-based stabilizability condition; thus greatly simplifying the stable and optimal PDC control design problem. The computational complexity for both differential and integral in the stable and optimal PDC control design of the original dynamic systems may therefore be reduced considerably. Then, for the static constrained-optimization problem, the HTGA is employed to find the stable and quadratic-optimal PDC controllers of the TS-fuzzy-model-based time-delay control systems. A design example of the stable and quadratic-optimal PDC controllers is given to demonstrate the applicability of the proposed approach. Finally, for the finite-horizon optimal control problem of a class of time-varying TS-fuzzy-model-based time-delay control systems, by complementarily fusing the OFA, the HTGA and the delay-dependent stabilizability condition, an integrative method is presented to design the stable and quadratic-optimal PDC controllers, where the delay-dependent stabilizability condition can be derived from the concept of convex sets and the LMI technique. A design example of the stable and quadratic-optimal PDC controllers of a class of the time-varying TS-fuzzy-model-based time-delay control systems is given to demonstrate the applicability of the proposed new integrative approach.
摘要
Abstract
誌謝
Contents
List of Tables
List of Figures
Chapter 1 Introduction
1.1 Background and Motivation
1.2 Organization of the Dissertation
Chapter 2 Analysis of TS-Fuzzy-Model-Based Time-Delay Control Systems via Orthogonal-Functions Approach
2.1 Solutions of Time-Varying TS-Fuzzy-Model-Based Time-Delay Dynamic Equations
2.2 Illustrative Example
2.3 Summary
Chapter 3 Stable and Quadratic-Optimal Control for the TS-Fuzzy-Model-Based Time-Delay Control Systems
3.1 Problem Statement
3.2 Stable and Quadratic-Optimal PDC Controllers Design
3.3 Illustrative Example
3.4 Summary
Chapter 4 Optimal and Stable PDC Controllers Design for a Class of Time- Varying TS-Fuzzy-Model-Based Time-Delay Systems
4.1 Problem Statement
4.2 Stable and Quadratic Finite-Horizon Optimal PDC Controllers Design
4.3 Illustrative Example
4.4 Summary
Chapter 5 Conclusions
Appendix A: Proof of Theorem in Chapter 3
Appendix B: Proof of Theorem in Chapter 4
References
Publications List
1. Akyuz, A. and M. Sezer, 2003, “Chebyshev Polynomial Solutions of Systems of High-Order Linear Differential Equations with Variable Coefficients,” Applied Mathematics and Computation, Vol.144, pp.237-247.
2. Babuska, R., 1998, Fuzzy Modeling for Control, Kluwer, Boston.
3. Barnett, S., 1979, Matrix Methods for Engineers and Scientists, McGraw-Hill, New York.
4. Cao, Y. Y. and P. M. Frank, 2000, “Analysis and Synthesis of Nonlinear Time-Delay Systems via Fuzzy Control Approach”, IEEE Trans. on Fuzzy Systems, Vol.8, pp.200-211.
5. Cao, Y. Y. and P. M. Frank, 2001, “Stability Analysis and Synthesis of Nonlinear Time-Delay Systems via Linear Takagi-Sugeno Fuzzy Models”, Fuzzy Sets and Systems, Vol.124, pp.213-229.
6. Chang, W. J. and W. Chang, 2006, “Model-Based Fuzzy Controller Design for Time-Delay Affine Takagi-Sugeno Fuzzy Models via ILMI Algorithm”, J. of Intelligent and Fuzzy Systems, Vol.17, pp.663-647.
7. Chen, B. and X. Liu, 2005, “Delay-Dependent Robust Control for T-S Fuzzy Systems with Time Delay”, IEEE Trans. on Fuzzy Systems, Vol.13, pp.544-556.
8. Chen, B., X. Liu and S. Tong, 2008, “Robust Fuzzy Control of Nonlinear Systems with Input Delay”, Chaos, Solitons and Fractals, Vol.37, pp.894-901.
9. Chen, B. S., C. S. Tseng and H. J. Uang, 1999, “Robustness Design of Nonlinear Dynamic Systems via Fuzzy Linear Control”, IEEE Trans. on Fuzzy Systems, Vol.7, pp.571-585.
10. Chiang, W. L., C. W. Chen, K. Yeh, M. Y. Liu and Z. Y. Chen, 2002, “A New Approach to Stability Analysis for Nonlinear Time-Delay Systems”, Int. J. of Fuzzy Systems, Vol.4, pp.735-737.
11. Chou, C. C., H. J. Uang and C. S. Tseng, 2006, “Mixed Fuzzy Control Design of Nonlinear Systems with Time Delays”, Proc. of the 14th National Conference on Fuzzy Theory and Its Applications, Taiwan, pp.A131-A136.
12. Chou, J. H., 1987, “Application of Legendre Series to the Optimal Control of Integrodifferential Equations”, Int. J. of Control, Vol.45, pp.269-277.
13. Chou, J. H. and I. R. Horng, 1985, “Shifted Chebyshev Series Analysis of Linear Optimal Control Systems Incorporating Observers”, Int. J. of Control, Vol.41, pp.129-134.
14. Chou, J. H. and I. R. Horng, 1986a, “State Estimation Using Continuous Orthogonal Functions”, Int. J. of Systems Science, Vol.17, pp.1261-1267.
15. Chou, J. H. and I. R. Horng, 1986b, “Shifted-Chebyshev-Series Analysis and Identification of Time-Varying Bilinear Systems”, Int. J. of Control, Vol.43, pp.129-137.
16. Chou, J. H. and I. R. Horng, 1987a, “Optimal Control of Deterministic Systems Described by Integrodifferential Equations via Chebyshev Series”, ASME J. of Dynamic Systems, Measurement and Control, Vol.109, pp.345-348.
17. Chou, J. H. and I. R. Horng, 1987b, “New Approach to the Optimal Control of Delay Systems via Chebyshev Series”, J. of the Franklin Institute, Vol.323, pp.95-102.
18. Chou, J. H., W. H. Liao and J. J. Li, 1998, “Application of Taguchi-Genetic Method to Design Optimal Grey-Fuzzy Controller of a Constant Turning Force Systems”, Proc. of the 15th CSME Annual Conference, Taiwan, pp.31-38.
19. Datta, K. B. and B. M. Mohan, 1995, Orthogonal Functions in Systems and Control, World Scientific, Singapore.
20. Elbarbary, E. M. E. and M. El-Kady, 2003, “Chebyshev Finite Difference Approximation for the Boundary Value Problems”, Applied Mathematics and Computation, Vol.139, pp.513-523.
21. Er, M. J. and D. H. Lin, 2002, “A New Approach for Stabilizing Nonlinear Systems with Time Delays”, Int. J. of Intelligent Systems, Vol.17, pp.289-302.
22. Farinwata, S. S., D. Filev and R. Langari, 2000, Fuzzy Control: Synthesis and Analysis, John Wiley and Sons, Chichester.
23. Friedland, B., 1986, Control System Design: An Introduction to State-Space Methods, McGraw-Hill, New York.
24. Gahinet, P., A. Nemirovski, A. J. Laub and M. Chilali, 1995, LMI Control Toolbox, The Math Works Inc., Massachusetts.
25. Gen, M. and R. Cheng, 1997, Genetic Algorithms and Engineering Design, John Wiley and Sons, New York.
26. Goodwin, G. C., S. F. Graebe and M. E. Salgado, 2001, Control System Design, Prentice-Hall, New Jersey.
27. Guan, X. P. and C. L. Chen, 2004, “Delay-Dependent Guaranteed Cost Control for T-S Fuzzy Systems with Time Delays”, IEEE Trans. on Fuzzy Systems, Vol.12, pp.236-249.
28. Ho, W. H. and J. H. Chou, 2004, “Solutions of Takagi-Sugeno Fuzzy-Model-Based Dynamic Equations via Orthogonal Functions”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E87-A, pp.3439-3442.
29. Ho, W. H. and J. H. Chou, 2005, “Solutions of Time-Varying TS-Fuzzy-Model-Based Dynamic Equations Using Shifted Chebyshev Series Approach”, Int. J. of Systems Science, Vol.36, pp.767-776.
30. Ho, W. H. and J. H. Chou, 2007, “Design of Optimal Controllers for Takagi-Sugeno Fuzzy Model Based Systems”, IEEE Trans. on Systems, Man and Cybernetics, Part A, Vol.37, pp.329-339.
31. Hou, Y. Y., T. L. Liao, C. H. Lien and J. J. Yan, 2006, “Decentralized Guaranteed Cost Control for Uncertain Fuzzy Large-Scale Systems with Time-Varying Delays”, Engineering Intelligent Systems for Electrical Engineering and Communications, Vol.14, pp.213-223.
32. Hsieh, C. H. and J. H. Chou, 2004, “Analysis and Optimal Control of Pulse Width Modulation Feedback Systems”, Proc. of Instn. Mech. Engrs., Part I: J. of Systems and Control Engineering, Vol.218, pp.277-286.
33. Jaddu, H., 2002, “Spectral Method for Constrained Linear-Quadratic Optimal Control”, Mathematics and Computers in Simulation, Vol.58, pp.159-169.
34. Jiang, X. and Q. L. Han, 2007, “On Guaranteed Cost Fuzzy Control for Nonlinear Systems with Interval Time-Varying Delay”, IET Control Theory and Applications, Vol.1, pp.1700-1710.
35. Li, D. Q., 2005, “Optimal Fuzzy Quaranteed Cost Control for Delta-Operator Based Nonlinear Systems,” J. of Systems Engineering and Electronics, Vol.27, pp.883-888.
36. Li, Z., 2006, Fuzzy Chaotic Systems: Modeling, Control and Applications, Springer, Berlin.
37. Nagurka, M. L. and S. K. Wang, 1993, “A Chebyshev-Based State Representation for Linear Quadratic Optimal Control”, ASME J. of Dynamic Systems, Measurement and Control, Vol.115, pp.1-6.
38. Nise, N. S., 2000, Control Systems Engineering, John Wiley and Sons, New York.
39. Ovaska, S. J., 2005, Computationally Intelligent Hybrid Systems: The Fusion of Soft Computing and Hard Computing, IEEE Press, New Jersey.
40. Pacheco, R. P. and V. Steffen Jr., 2002, “Using Orthogonal Functions for Identification and Sensitivity Analysis of Mechanical Systems”, J. of Vibration and Control, Vol.8, pp.993-1021.
41. Park, P. G., S. S. Lee and D. J. Choi, 2003, “State-Feedback Stabilization for Nonlinear Time-Delay Systems: A New Fuzzy Weighting-Dependent Lyapunov-Krasovskii Functional Approach”, Proc. of the 42nd IEEE Conference on Decision and Control, Hawaii, pp.5233-5238.
42. Patra, A. and G. P. Rao, 1996, General Hybrid Orthogonal Functions and Their Applications in Systems and Control, Springer-Verlag, Berlin.
43. Rao, S. S., 1995, Mechanical Vibrations, Addison-Wesley, New York.
44. Roberts, A. W. and D. E. Varberg, 1973, Convex Functions, Academic Press, New York.
45. Shin, H., E. Kim and M. Park, 2003, “The State Feedback Control Based on Fuzzy Observers for T-S Fuzzy Systems with Unknown Time-Delay”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol.E86-A, pp.2333-2339.
46. Song, C. and T. Chai, 2005, “Comment on Discrete-Time Optimal Fuzzy Controller Design: Global Concept Approach,” IEEE Trans. on Fuzzy Systems, Vol.13, pp.285-286.
47. Taguchi, G., S. Chowdhury and S. Taguchi, 2000, Robust Engineering, McGraw-Hill, New York.
48. Takagi, T. and M. Sugeno, 1985, “Fuzzy Identification of Systems and Its Applications to Modeling and Control”, IEEE Trans. on Systems, Man and Cybernetics, Vol.15, pp.116-132.
49. Tanaka, K. and H. O. Wang, 2001, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, John Wiley and Sons, New York.
50. Tong, S. C., T. Wang, Y. P. Wang and J. T. Tang, 2004, Design and Stability Analysis of Fuzzy Control Systems, Science Press, Beijing.
51. Tsai, J. T., T. K. Liu and J. H. Chou, 2004, “Hybrid Taguchi-Genetic Algorithm for Global Numerical Optimization”, IEEE Trans. on Evolutionary Computation, Vol.8, pp.365-377.
52. Wang, R. and J. Pan, 2007, “Delay-Dependent LMI Conditions for Stability and Stabilization of T-S Fuzzy Systems with Time-Delay”, Proc. of the 26th Chinese Control Conference, Hunan, pp.416-419.
53. Weinmann, A., 1991, Uncertain Models and Robust Control, Springer-Verlag, Hong Kong.
54. Wu, Y., 2000, Taguchi Methods for Robust Design, The American Society of Mechanical Engineers, New York.
55. Yoneyama, J., 2008, “Robust Stability and Stabilizing Controller Design of Fuzzy Systems with Discrete and Distributed Delays”, Information Sciences, Vol.178, pp.1935-1947.
56. Yu, L., 2002, Robust Control: Linear Matrix Inequality Approach, Tsinghua University Press, Beijing.
57. Zhang, H., D. Yang and T. Chai, 2007, “Guaranteed Cost Networked Control for T-S Fuzzy Systems with Time Delays”, IEEE Trans. on Systems, Man and Cybernetics, Part C, Vol.37, pp.160-172.
58. Zhang, H., Y. Wang and D. Liu, 2008, “Delay-Dependent Guaranteed Cost Control for Uncertain Stochastic Fuzzy Systems with Multiple Time Delays”, IEEE Trans. on Systems, Man and Cybernetics, Part B, Vol.38, pp.126-140.
59. Zheng, K., J. M. Xu and L. Yu, 2004, “Takagi-Sugeno Model-Based Optimal Guaranteed Cost Fuzzy Control for Inverted Pendulums”, J. of Control Theory and Applications, Vol.21, pp.703-708.
60. Zhu, B. Y., Q. L. Zhang and X. F. Zhang, 2005, “Decentralized Robust Guaranteed Cost Control for Uncertain T-S Fuzzy Interconnected Systems with Time Delays”, Int. J. of Information and Systems Sciences, Vol.1, pp.73-88.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊