跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳宜翰
研究生(外文):I-Han Wu
論文名稱:射頻濺鍍法備製二氧化鈦薄膜之研究
論文名稱(外文):The Study of Titanium Oxide Thin Film Prepared by RF Sputtering
指導教授:高宗達
指導教授(外文):Tzung-Ta Kao
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:90
中文關鍵詞:霍爾效應射頻濺鍍二氧化鈦
外文關鍵詞:Titanium OxideRF SputteringHall Effect
相關次數:
  • 被引用被引用:2
  • 點閱點閱:326
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要是探討以射頻磁控濺鍍(Radio Frequency magnetron sputtering, RF Sputter)之系統製作二氧化鈦薄膜,再以熱處理退火的方式對膜材進行後處理,利用不同的製程參數分析探討工作壓力、氧氣流量、濺鍍時間、濺鍍功率的變化,在熱處理後分析變化的結晶結構、表面形態和化學組成之影響。然而在濺鍍沉積二氧化鈦膜前,必須先於基材預鍍鈦層,才可直接成長良好結構之薄膜。

在射頻濺鍍二氧化鈦過程中,反應氧氣氣體不足夠時,濺鍍得到的TiO2薄膜由於氧缺位呈n型導電,因此預先在基材上沉積一層鈦層,以填補所氧缺位,期許得到 TiO2薄膜的導電類型發生了轉變,由n型導電轉向p型導電,本研究對這一現象進行了研究與製作,並分析討論鈦層厚度和真空退火條件對薄膜p型導電性質的影響。

由於鈦靶是活性大的之元素會容易氧氣進行反應,在氬氣與氧氣的流量比例不匹配時,腔體壓力會變成不穩定而造成電漿熄滅。表示在靶材表面以慢慢形成氧化物而成為絕緣層,此現象稱造成靶中毒,降低濺鍍速率,因此本研究利用不同參數組來製作所需之二氧化鈦薄膜,經霍爾量測後,分別出現n及p型之二氧化鈦薄膜現象。當隨著退火溫度升高時,製作的薄膜其載子濃度及電阻率會下降,而載子移動率上升。

XRD 分析顯示二氧化鈦薄膜在隨著進行熱處理後,整個薄膜會慢慢逐漸經由銳鈦鑛(anatase)晶相轉變為金紅石(rutile)晶相的結構,在退火溫度為500 ℃時,薄膜會出現銳鈦鑛與金紅石晶相共存現象。
This thesis is to study the characteristics of the Titanium Oxide thin films deposited on Silicon Wafer substrate by Radio Frequency magnetron sputtering using Ti target in plasma of Argon and Oxygen mixtures. The experimental parameters are including chamber pressure, oxygen flow ratio, annealing temperature and thickness of titanium layer. The effects of the processing parameters on the crystal structure, surface morphology, chemical composition and other characteristics of titanium oxide thin films were investigated by different oxygen flow ratios, thickness titanium layer on substrate and thermal treatments.

The titanium oxide thin films deposited by RF sputtering, will usually formed during the process under the oxygen insufficient condition behave N-type electrical conduction due to the Oxygen vacancy. In this thesis was pre-deposited a Ti layer on substrate before the deposition of the titanium oxide thin films and expect the oxygen vacancy to be occupied by the Ti atoms. The author studied this phenomenon and discussed the effect of Ti layer thickness and vacuum annealing temperature on N and P type semiconducting properties of the titanium oxide thin films.

The titanium thin films of different processing recipes were characterized by Hall Effect, XRD and FE-SEM+EDS. The results indicated that the TiO2 films of N and P type are in anatase phase when annealing at 300 ~ 400 degrees. But when the annealing temperature reach 500 degree celsius both of the anatase and rutile phase coexists.
中 文 摘 要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 論文架構 3
第二章、二氧化鈦應用之文獻回顧 4
2.1 光觸媒研究 4
2.2 再生能源研究 10
2.2.1 光電化學電池 10
2.2.2 染料敏化太陽能電池 17
2.3二氧化鈦N-P型式理論分析 21
2.3.1 點缺陷 21
2.3.2空位 22
2.3.3間隙原子 23
2.3.4置換原子 23
2.3.5高分子晶體中的點缺陷 23
2.3.6離子晶體中點缺陷 24
2.3.7 N-P型理論缺陷分析 26
2.4薄膜沉積成核機構 30
2.4.1 沉積成核現象 30
2.4.2凝結與成核 31
2.4.3薄膜的形成與成長 33
第三章、實驗步驟與設備 34
3.1實驗內容 34
3.1.1 二氧化鈦薄膜沉積 34
3.1.2 薄膜退火處理 34
3.1.3 物性分析 34
3.2實驗流程 35
3.3實驗儀器 36
3.3.1 磁控濺鍍機 36
3.3.2 表面輪廓儀 38
3.3.3 場發射掃瞄式電子顯微鏡 39
3.3.4 X光繞射 40
3.3.5 霍爾量測儀 41
3.3.6 快速退火系統 44
第四章、結果與討論 45
4.1參數分析 45
4.1.1 氧氣流量對製程壓力與靶材電壓之影響 48
4.1.2 鈦層厚度對TiO2薄膜結構之影響 50
4.2薄膜分析 53
4.2.1 TiO2薄膜結構Hall Effect Measurement之分析 53
4.2.2 TiO2薄膜結構XRD之分析 70
4.2.3 TiO2薄膜結構SEM之分析 73
第五章、結論與未來展望 85
5.1實驗結論 85
5.2未來展望 86
參考文獻 87
[1] M. Grätzel, “Powering the planet”, Nature Publishing Group, p363, 2000.
[2] M. Grätzel, “Photoelectrochemical cells”, Nature, p338-344, 2001.
[3]吳紀聖,“從全球碳質量與能量均衡的觀點看待二氧化碳溫室效應”,台大工程學刊,第84期,103-110頁,2002年。
[4] A. Fujishima, K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature, 238, p37-38, 1972.
[5]彭懷夫,“中孔性二氧化鈦薄膜於染料敏化太陽能電池之應用”,國立東
華大學化學研究所碩士論文,2004年。
[6]詹光達,“二氧化鈦薄膜的製備與量測”,逢甲大學光電物理研究所碩士論文, 2004 年。
[7] Amy L. Lnsebigler, Guangquan Lu, John T. Yates, Jr., “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results “, Chem. Rev., 95, p735-758, 1995.
[8] M. R. Hoffman, S. T. Martin, W. Choi, D. W. Bahnemann, ”Environmental Applications of Semiconductor Photocatalysis”, Chem. Rev. 95, 69, 1995.
[9] Aaron Wold,” Photocatalytic properties of titanium dioxide(TiO2)”, Chem. Mater., 5, p280-283, 1993.
[10] M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martinez,” An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals”, Environ. Sci. Technol., 27, p1776-1782, 1993.
[11] B. O’Regan, M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, p737-740, 1991.
[12] T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell,” Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects”, Int. J. Hydrogen Energy, 27, p991-1022, 2002.
[13] G.P. Smestad, M. Grätzel,” Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter”, J. Chem. Educ., 75, p752-756, 1998.

[14]. A. Kay, M. Grätzel, “Low cost photovoltaic modules based on dye Sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials & Solar Cells, 44, p99-117, 1996.
[15] Akira Fujishima, Tata N. Rao, Donald A. Tryk,”Titanium dioxide photocatalysis”, J Photochemistry and photobiology C: Photochemistry Review, p1-21, 2000.
[16] Shahed U. et al, “Efficient photochemical water splitting by a chemically modified n- ”, Science vol 297, 2002.
[17] Zhigang Zou, Jinhua Ye, Kazuhiro Sayama, Hironori Arakawa, “Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst”, Nature, Vol.414, p625-627, 2001.
[18] K. Honda In: Ohta T, editor. Solar-Hydrogen Energy Systems. Oxford: Pergamon Press, p137, 1979.
[19] M.M. Gomez, N. Beermann, et al.,“ Dye-sensitized sputtered titaniumoxide films for photovoltaic applications: influence of the O2/Ar gas flow ratio during the deposition”, Solar Energy Materials & Solar Cells, 76, p37-56, 2003.
[20] Oriel-Instruments. Book of Photon Tools, p1–3, 1999.
[21] Wenham SR, Green MA, Watt ME. Applied photovoltaics, Centre for Photovoltaic Devices and Systems, Sydney, p239, 1994.
[22] Chandra S. Photoelectrochemical solar cells. New York: Gordon and Breach, p98, 1985.
[23] Anderman M, Kennedy JH. In: Finklea HO, editor.Semiconductor electrodes. Amsterdam: Elsevier, p147–202, 1988.
[24] Chandra S. Photoelectrochemical solar cells. New York:Gordon and Breach, p163, 1985.
[25] L. Kazmerski, “Photovoltaics: A review of cell and module technologies,” Renewable Sustainable Energy Rev., 1, p71-170, 1997.
[26] Cahen et al., “Nature of Photovoltaic Action in Dye-Sensitized Solar Cells” J. Phys. Chem. B, p2053-2059, 2000.


[27] J. Nowotny, M. Radecka, et al.,” Electronic and Ionic Conductivity of TiO2 Single Crystal Within the n-p Transition Range”, Ceramics International, 24, p571-577, 1998.
[28] B.-S. Jeong, D.P. Norton, J.D. Budai,” Conductivity in transparent anatase TiO2 films epitaxially grown by reactive sputtering deposition”, Solid-State Electronics, 47, p2275-2278, 2003.
[29] Baoshun Liu, Xiujian Zhao, et al.,” The effect of O2 partial pressure on the structure and photocatalytic property of TiO2 films prepared by sputtering“, Materials Chemistry and Physics, 90, p207-212, 2005.
[30] Cheng-Chia Huang, Jenn-Chen Tang, Wei-Han Tao,” Optical properties of tungsten and titanium oxide thin films prepared by plasma sputter deposition”, Solar Energy Materials and Solar Cells, 83, p15-28, 2004.
[31] H.W. Han, N.-E. Lee,” Sputter deposition modeling of Ti thin film on a sharp tip”, Thin Solid Films, 475, p144-149, 2005.
[32] Hsiao-Chiang Yao, Ming-Chieh Chiu, et al.,” Influence of Radio Frequency Bias on the Characteristics of TiO2 Thin Films Prepared by DC Sputtering”, Journal of The Electrochemical Society, 153, p237-243, 2006.
[33] M.M. Gomez, J. Lu, et al.,” High efficiency dye-sensitized nanocrystalline solar cells based on sputter deposited Ti oxide films”, Solar Energy Materials and Solar Cells, 64, p385-392, 2000.
[34]Masahide Takahashi, Kaori Tsukigi, et al.,” Effective Photogeneration in TiO2/VO2/TiO2 Multilayer Film Electrodes Prepared by a Sputtering Method”, J. Phys. Chem. B, 107, p13455-13458, 2003.
[35]Masaaki Kitano, Keisho Funatsu, et al.,” Preparation of Nitrogen-Substituted TiO2 Thin Film Photocatalysts by the Radio Frequency Magnetron Sputtering Deposition Method and Their Photocatalytic Reactivity under Visible Light Irradiation”, J. Phys. Chem. B, 110, p25266-25272, 2006.
[36]材料工程學院,網站教學
http://www2.zzu.edu.cn/classware/clkx/menu/cailiao/content/chap3/31.htm

[37]Zhao Da-qing, Li Yan, Yang Feng,” Preparation and Properties of P-type Conducting Titanium Oxide Film”, Piezoelectrics and Acoustooptics, Vol.26, No.3, 2004.
[38]Zhang Bai-Shun, He Jun, Zhang Tian-Jin,” Control of the Ti out-diffusion in Pt/Ti Bottom Electrode for Ferroelectric Thin Film”, Electronic Components and Materials, Vol.25, No.3, 2006.
[39]Chang Tie-Jun, Wu Xiu-Fang, Sun Jie, Sun Yan,” Optimization of technological parameters of photocatalytic TiO2 film by magnetron sputtering”, Applied Science and Technology, Vol.34, No.1, 2007.
[40]Omar Manaserh, “Semiconductor and Heterojunctions and Nanostructures”, Chapter 7, p265-267, McGraw-Hill, 2005.
[41]田民波,”薄膜技術與薄膜材料”Chapter 6,五南文化,2007.
[42]Hisashi Kikuchi, Masaaki Kitano, et al.,” Extending the Photoresponse of TiO2 to the Visible Light Region: Photoelectrochemical Behavior of TiO2 Thin Films Prepared by the Radio Frequency Magnetron Sputtering Deposition Method“, J. Phys. Chem. B, 110, p5537-5541, 2006.
[43]J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard,” Titanium dioxide for solar-hydrogen I. Functional properties”, International journal of Hydrogen energy, 32, p2609-2629, 2007.
[44]J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard,” Titanium dioxide for solar-hydrogen II. Defect chemistry”, International journal of Hydrogen energy, 32, p2630-2643, 2007.
[45]T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell,” Defect chemistry and semiconducting properties of titanium dioxide: I. Intrinsic electronic equilibrium“, Journal of Physics and Chemistry of Solids, 64, p1043-1056, 2003.
[46]T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell,” Defect chemistry and semiconducting properties of titanium dioxide: II. Defect diagrams”, Journal of Physics and Chemistry of Solids, 64, p1057-1067, 2003.
[47]J. Nowotny, M. Radecka, et al.,”Semiconducting properties of undoped TiO2“, J. Phys. Chem. Solids, Vol 58, No 6, p927-937, 1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊