跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/03 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳永達
研究生(外文):Yung-da Chen
論文名稱:最佳化設計植物生長燈與多波長LED光源調變系統研製
論文名稱(外文):Optimal Design of a Plant-Growth Lamp and Development of a Multi-Wavelength LED Modulation Light System
指導教授:馮榮豐馮榮豐引用關係
指導教授(外文):Rong-fong Fung
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:55
中文關鍵詞:相移比實數型基因演算法 (RGA)發光二極體 (LED)頻率波長工作比均勻度照明效率
外文關鍵詞:Duty ratiofrequencyilluminationLEDreal-coded genetic algorithm (RGA)phaseuniformitywavelength.
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1096
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要是利用實數型基因演算法 (Real-coded Genetic Algorithm, RGA) 對植物生長燈做最佳化設計。並且由過去文獻我們得知波長、頻率、工作比等参數會影響植物生長,因此我們設計光源刺激系統透過人機介面 (LabVIEW) 能夠彈性調整︰波長、頻率、工作比、光強度。目前市面上已有將調變技術應用於多波長發光二極體 (Light Emitting Diode, LED) 而作成產品,本研究是探討多波長 LED 調變後再同步的技術,同時探討多波長 LED 調變後的相位移設計。透過個人電腦、微處理器以及相關界面電路,本系統允許光波長、頻率 (0 ~ 10 kHz)、工作比 (0 ~ 100%)、光強度與相移比 (0 ~ 360o) 可獨立調整的功能。該植物生長燈透過實數型基因演算法能夠有效改善均勻度和照明效率。對生物體光生理相關研究是一種非常有用的儀器。
In this paper, a real-coded genetic algorithm (RGA) technique is developed for the optimal design of a supplemental lighting system for plant-growth. Moreover, it is known that the parameters: wavelength, frequency, duty ratio and amplitude will affect the plant-growth. We design a functional light stimulation system that can provide a flexible interface to adjust the parameters for users and researchers. There are many products adopts the modulation technique in multiple wavelengths of LEDs (light emitting diodes). Here, we employ the technique of modulation and synchronizing in multi-wavelength LEDs, and design the phase shifts between them. The LED plant- growth system is named as LED modulation light illumination system (LMLIS). Through operations of the personal computer, microprocessor and related interface circuits, the system allows the light quality, light intensity, frequency (0 ~ 10 kHz), duty ratio (0 ~ 100%) and phase shift (0~360o) to be controlled. The optimal design in height and working current of the plant-growth lamp by the RGA shows the improved values of light uniformity and illumination efficiency. The innovatively designed systems are compared favorably with the typical and expert-designed lighting systems. It is concluded that the system is satisfactorily developed to the photosynthesis applications.
摘要 ------------------------------------------------------------------------------------------------- i
Abstract -------------------------------------------------------------------------------------------- ii
誌謝 ----------------------------------------------------------------------------------------------- iii
Contents ------------------------------------------------------------------------------------------- iv
Figure Caption ----------------------------------------------------------------------------------- vi
Table Caption ---------------------------------------------------------------------------------- viii
Nomenclature ------------------------------------------------------------------------------------ ix
Chapter 1 Introduction ------------------------------------------------------------------------- 1
Chapter 2 Mathematical Formulations for Uniform Illumination -------------------- 5
2.1 Preliminaries ---------------------------------------------------------------------- 5
2.2 Source model from a single LED --------------------------------------------- 5
2.3 Configurations of LED arrays for illumination distribution ---------------- 6
2.3.1 Circular ring LED array ---------------------------------------------------- 6
2.3.2 Square LED array ----------------------------------------------------------- 7
2.4 Design principle and light source choose ------------------------------------- 8
2.4.1 Spectral composition -------------------------------------------------------- 8
2.4.2 The plant-growth lamp source model ------------------------------------- 8
Chapter 3 Optimal Design of a Plant-Growth Lamp by RGA ------------------------- 9
3.1 Methodology ---------------------------------------------------------------------- 9
3.1.1 The SRGA method ---------------------------------------------------------- 9
3.1.2 The MORGA method ------------------------------------------------------- 9
3.2 Implementation of real-code genetic algorithms ---------------------------- 12
3.3 Design examples ---------------------------------------------------------------- 13
3.3.1 Single-objective optimization -------------------------------------------- 13
3.3.2 Multi-objective optimization --------------------------------------------- 14
Chapter 4 Light Control System ---------------------------------------------------------- 18
4.1 Multi-channel modulation signal generators -------------------------------- 18
4.2 LED lighting panel module ---------------------------------------------------- 19
4.3 System architecture and integration ------------------------------------------ 20
Chapter 5 Results and Discussion ----------------------------------------------------------- 21
5.1 Numerical simulations and experimental examples ------------------------ 21
5.1.1 Numerical simulations ---------------------------------------------------- 21
5.1.2 Experimental examples --------------------------------------------------- 22
5.2 Measurement of LEDs ---------------------------------------------------------- 22
5.3 Relationship between non-synchronous and synchronous condition ---- 23
5.3.1 Non-synchronous condition ---------------------------------------------- 24
5.3.2 Synchronous condition ---------------------------------------------------- 24
Chapter 6 Conclusions ------------------------------------------------------------------------ 26
References --------------------------------------------------------------------------------------- 27
Vita ------------------------------------------------------------------------------------------------ 54
Publication --------------------------------------------------------------------------------------- 55
[1] R. J. Bula, R. C. Morrow, T. W. Tibbits, and D. J. Barta, “Light–emitting diodes as a radiation source for plants,” HortScience 26(2), pp. 203-205 (1991).
[2] D.R. Geiger, and G. P. Noname, “General lighting requirements for photosynthesis
”, International Lighting in Controlled Environments Workshop, pp. 3-18 (1994).
[3] C. Y. Feng, H. N. Feng, and S. Z. Jin, “The research of lamp for the growing of green plants”, Proceedings of SPIE, pp. 192-197 (2005).
[4] R. Emerson, and W. Arnold, “A separation of the reactions in photosynthesis by means of intermittent light”, J. Gen. Physiol. 15, pp. 391-420 (1932).
[5] R.C. Jao, and W. Fang, “Effects of frequency and duty ratio on the growth of potato plantlets in vitro using Light-emitting Diodes”, HortScience 39(2), pp. 375-379 (2004).
[6] R.C. Jao, and W. Fang, “Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods”, HortScience 39(2), pp. 380-382 (2004).
[7] S. Takita, K. Okamoto, and T. Yanagi, “Computer simulation of PPF distribution under blue and red LED light source for plant growth”, Acta Hortic. 440, pp. 286-291 (1996).
[8] R. C. Jao, and W. Fang, “Simulation of light environment under blue and red LEDs”, J of Agricultural Machinery 9(3), pp. 51-63 (2000).
[9] Chiachung. Chen, “Fluorescent lighting distribution for plant micropropagation”, Biosystems Engineering. 90(3), pp. 295-306 (2005).
[10] R. C. Jao, and W. Fang, “An adjustable light source for photo-phyto related research and young plant production”, Applied Engineering in Agriculture. 19(5), pp. 601-608 (2003).
[11] D. H. Lee, “Development of a multi-wavelength LED modulation system for biology study”, National Kaohsiung First University of Science and Technology in Mechanical and Automation Engineering (2006).
[12] CCS Crop., http://www.ccs-inc.co.jp, 2005.
[13] K. P. Ferentinos, and L. D. Albright, “Optimal design of plant lighting system by genetic algorithms”, Engineering Applications of Artificial Intelligence. 18, pp. 473-484 (2005).
[14] J. D. Schaffer, “Multiple objective optimization with vector evaluated genetic algorithms”, Proc. 1st ICGA, pp. 93-100 (1985).
[15] T. Murata, and H. ishibuchi, “MOGA: Multi-objective genetic algorithms”, Computers ind. Engng 30(4), pp. 957-968 (1996).
[16] D. Wood, “Optoelectronic semiconductor devices”, Prentice-Hall International, pp.84-88 (1994).
[17] I. Moreno, M. Avendano-Alejo, and R. I. Tzonchev, “Designing light-emitting diode arrays for uniform near-field irradiance”, Applied Optic. 45(10), (2005).
[18] D. E. Goldberg, “Genetic algorithms in search, optimization and machine learning,” Addison Wesley, Reading, MA, (1989).

IWASAKI ELECTRIC CO.,
[19] Iwasaki Electric Corp, http://www.iwasaki.co.jp/index.html.
[20] J. L. Ha, Y. S. Kung, R. F. Fung, and S. C. Hsien “A comparison of fitness functions for the identification of piezoelectric hysteretic actuator based on the real-coded genetic algorithm”, Sensors and Actuators 132, pp. 643-650 (2006).
[21] Macroblock, Inc., http://www.mblock.com.tw/.
[22] J. M. Gordon, P. Kashin, and A. Rabl, “Nonimaging reflectors for efficient uniform
illumination”, Appl. Opt. 31, pp. 6027-6035 (1992).
[23] Ranold, W., Ignatius, Todd, S., Martin, Raymond J., Bula, Robert, C, Morrow,
Theodore, W., Tibbitts, “Method and apparatus for irradiation of plants using optoelectronic devices”, United States Patent and Trademark Office Database, Patent number: 5012609 (1991).
[24] Everlight Corp, http://www.everlight.com/.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊