中文文獻
1.世界白銀年鑑(2006),英國黃金礦業服務有限公司受世界白銀協會委託編制,孫鳳民總編,中國珠寶玉石首飾行業協會與世界白銀協會聯合出版,17-94。
2.世界白銀年鑑(2007),英國黃金礦業服務有限公司受世界白銀協會委託編制,王耀總編,中國商業聯合會與世界白銀協會聯合出版,7-95。
3.李宏志、賴秀卿(2001),黃金與白銀期貨間套利機會之探討-根據每日最後小時資料,成功大學學報,36,65-90。4.李沃牆、李建信(2003),台指選擇權之評價-ANN與GANN模型之績效比較,真理財經學報,8,25-50。5.余尚武、黃雅蘭(2003),台灣股價指數期貨套利之研究-類神經網路與灰色理論之應用,電子商務學報,5,87-115。6.吳宗正、溫敏杰、侯惠月(2001),類神經網路及統計方法在台股指數期貨預測研究之比較,成功大學學報,36,91-109。7.林美蓮(2001),高頻率股市報酬波動性之ANN-GARCH MODEL,交通大學經營管理研究所碩士論文。8.柯淑玲(2000),運用類神經網路於台股認購權證評價模式之實證研究,義守大學管理研究所碩士論文。9.黃政仁(1996),貴金屬市場中黃金與白銀期貨間互動性及效率性之探討-根據每小時資料,國立成功大學會計學研究所碩士論文。10.黃華山、邱一薰(2005),類神經網路預測台灣50股價指數之研究,資訊科技與社會學報,5,19-42。
11.陳安斌、許育嘉(2004),整合小波轉換與神經網路於金融投資決策時間序列預測之研究,資訊管理學報,11(1),139-165。12.葉怡成(2004),類神經網路模式應用與實作,台北:儒林圖書。
英文文獻
1.Agnon, Y., Golan, A., & Shearer, M. (1999). Nonparametric, nonlinear, short-term forecasting: theory and evidence for nonlinearities in the commodity markets. Economics Letters, 65, 293-299.
2.Aguirre, A., & Aguirre, L. A. (2000). Time series analysis of monthly beef cattle prices with nonlinear autoregressive models. Applied Economics, 32(3), 265-275.
3.Ailawadi, K. L., & Neslin, S. A. (1998). The effect of promotion on consumption: buying more and consuming it faster. Journal of Marketing Research, 35(3), 390-398.
4.Amilon, H. (2003). A neural network versus black-scholes: a comparison of pricing and hedging performance. Journal of Forecasting, 22(4), 317-335.
5.Brooks, C. (1998). Predicting stock index volatility: can market volume help? Journal of Forecasting, 17(1), 59-80.
6.Cai, J., Cheung, Y. L., & Wong, M. C. S. (2001). What moves the gold market? Journal of Futures Markets, 21(3), 257-278.
7.Chow, Y. F. (2001). Arbitrage, risk premium, and cointegration tests of the efficiency of futures markets. Journal of Business Finance and Accounting, 28(5/6), 693-713.
8.Christie-David, R., Chaudhry, M., & Koch, T. W. (2000). Do macroeconomics news releases affect gold and silver prices? Journal of Economics and Business, 52(5), 405-421.
9.Ciner, C. (2001). On the long run relationship between gold and silver prices, A note. Global Finance Journal , 12(2), 299-303.
10.Cornell, B., & French, K. (1986). Commodity own rates, real interest rates, and money supply announcements. Journal of Monetary Economics, 18(1), 3-20.
11.Dhillon, U. S., Lasser, D. J., & Watanabe, T. (1997). Volatility, information, and double versus walrasian auction pricing in US and Japanese futures markets. Journal of Banking & Finance, 21(7), 1045-1061.
12.Donaldson, G. R., & Kamstra, M. (1996). Forecast combining with neural networks. Journal of Forecasting, 15(1), 49-61.
13.Ederington, L., & Lee, J. (1993). How markets process information: news releases and volatility. Journal of Finance, 48(4), 1161-1191.
14.Einhorn, C. S. (1995). What’s sparking silver? Barron’s May 15, 75(20): MW 14(1).
15.Erdem, T. (1996). A dynamic analysis of market structure based on panel data. Marketing Science, 15(4), 359-378.
16.Escribano, A., & Granger, C. W. J. (1998). Investigating the relationship between gold and silver prices. Journal of Forecasting, 17(2), 81-107.
17.Fineberg, S. (1996). Silver analysis sees stronger mart. American Metal Market May 16, 104.
18.Frankel, J., & Hardouvelis, G. A. (1985). Commodity prices, money surprises, and Fed credibility. Journal of Money, Credit and Banking, 17(4), 425-438.
19.Frees, E. W., & Miller, T. W. (2004). Sales forecasting using longitudinal data models. International Journal of Forecasting, 20(1), 99-114.
20.Hamid, S. A., & Zahid, I. (2002). Using neural networks for forecasting volatility of S&P500 index futures prices. Journal of Business Research, 5881, 1-10.
21.Hibon, M., & Evgeniou, T. (2005). A simple procedure for reliability of repairable systems. International Journal of Forecasting, 21, 15-24.
22.Hill, S. R., Moore, N. H., & Pruitt, S. W. (1991). Gold fusion-hot metal: An analysis of the metals futures market reactions to the cold fusion announcement. Journal of Future Mark, 11(3), 385-397.
23.Hill, T., O’Connor, M., & Remus, W. (1996). Neural networks models for time series forecasts. Manage Science, 42(7), 1082-1092.
24.Hsieh, K. L. (2001). Process improvement in the presence of qualitative response by combing fuzzy sets and neural networks. Integrated Manufacturing Systems, 12(6-7), 449-462.
25.Ma, C. K. (1985). Spreading between the gold and silver markets:is there a parity? The Journal of Futures Markets, 5(4), 579-594.
26.Ma, C. K., & Soenen, L. A. (1988). Arbitrage opportunities in metal futures markets. The Journal of Futures Markets, 8(2), 199-209.
27.Mahdavi, S., & Zhou, S. (1997). Gold and commodity prices as leading indicators of inflation: tests of long-run relationship and predictive performance. Journal of Economics and Business, 49(5), 475-489.
28.Mcloone, S., Brown, M. D., Irwin, G., & Lightbody, A. (1998). A hybrid linear/nonlinear training algorithm for feedforward neural networks. IEEE Transactions on Neural Networks, 9(4), 669-684.
29.Mirmirani, S., & Li, H. C. (2004). Gold price, neural networks and genetic algorithm. Computational Economics, 23(2), 193-200.
30.Nakhjavani, O. B., & Ghoreishi, M. (2006). Multi criteria optimization of laser percussion drilling process using artificial neural network model combined with genetic algorithm. Materials and Manufacturing Process, 21(1), 11-18.
31.Narendra, K., & Parthasarathy, K. (1990). Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), 4-27.
32.Parisi, A., Parisi, F., & Diaz, D. (2007). Forecasting gold price changes: rolling and recursive neural network models. Journal of Multinational Financial Management, 1-14.
33.Ramazan, G. (1996). Non-linear prediction of security returns with moving average rules. Journal of Forecasting, 15(3), 165-174.
34.Sexton, R. S., Alidaee, B., Dorsey, R. E., & Johnson, J. D. (1998). Toward global optimization of neural networks: a comparison of the genetic algorithms and backpropagation. Decision Support Systems, 22(2), 171-185.
35.Shaikh, A., & Zahid, I. (2004). Using neural networks for forecasting volatility of S&P 500 index futures prices. Journal of Business Research, 57(10), 1116-1125.
36.Timmermann, A., & Granger, C. W. J. (2004). Efficient market hypothesis and forecasting. International Journal of Forecasting, 20(1), 15-27.
37.Tong, L. I., & Liang, Y. H. (2005). Forecasting field failure data for repairable systems using neural networks and SARIMA model. International Journal of Quality and Reliability Management, 22(4), 410-420.
38.Urich, T. J. (2000). Models of fluctuation in metal futures prices. Journal of Futures Markets, 20(3), 219-241.
39.Varela, O. (1999). Futures and realized cash or settle prices for gold, silver, and copper. Review of Financial Economics, 8(2), 121-138.
40.Wahab, M., Cohn, R., & Lashgari, M. (1994). The gold-silver spread: integration, cointegration, predictability and ex-ante arbitrage. Journal of Futures Markets, 14(6), 707-756.
41.Webby, R., & O’Connor, M. (1996). Judgmental and statistical time-series forecasting: a review of the literature. International Journal of Forecasting, 12(1), 91-118.
42.Xu, X. E., & Fung, H. G. (2005). Cross-market linkages between U.S. and Japanese precious metals futures trading. International Financial Markets, Institutions and Money, 15(2), 107-124.
43.Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial networks: the state of the art. International Journal Forecasting, 14(1), 35-62.
網路文獻
1.中國白銀網(2007),上海華通鉑銀講評,http://www.ex-silver.com/。
2.世界日報(2006),取自http://blog.xuite.net/jsksonic/sycee/10235867。
3.Kitco網站(2008),http://www.kitco.com。