跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/10 12:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張俊傑
研究生(外文):Jun-Jie Chang
論文名稱:具有太陽能致冷晶片蒸發器之變頻壓縮機馬達整合驅動器研究
論文名稱(外文):Drive System Design for Inverter Compressor Motor with Solar Thermoelectric Cooler Vaperizer
指導教授:郭見隆郭見隆引用關係
指導教授(外文):Jian-Long Kuo
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:機械與自動化工程所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:159
中文關鍵詞:最大功率追蹤直交粒子群演算法無感測驅動實驗設計法熱電致冷器
外文關鍵詞:maximum power point trackingorthogonal particle swarm optimizationsensorlessthe design of experimentsthermoelectric cooler
相關次數:
  • 被引用被引用:0
  • 點閱點閱:379
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文將太陽能源透過熱電致冷晶片蒸發器的設計藉此協助壓縮機省電,運用太陽能致冷晶片提供蒸發器另一個冷源,來提高冷房的效率。太陽能致冷晶片PWM控制系統,以直交粒子群演算法達成最佳功率追蹤控制,藉由提升最大功率追蹤法則來提升太陽能能量蒐集的效率。
其中空調系統中壓縮機馬達驅動器搭配功因校正電路,除了可以使輸入電流變成正弦提升市電使用效率之外,也提升了直流鏈的電壓值,有助於PWM之驅動,以降低市電的總諧波失真性能。系統中更運用熱電致冷晶片,直接幫助變頻壓縮機省電,最後應用實驗設計法找出影響整體系統之因素,以利有效降低壓縮機電力消耗。
The solar-cell thermoelectric cooler embedded in the air conditioner system for providing with a cool source to further improve the cooling efficiency of the inverter air conditioner system will be investigated in this thesis. The solar-cells are used to drive the thermoelectric cooler by using pulse width modulation (PWM). In addition, a novel orthogonal particle swarm optimization (OPSO) is used to maximize the output power of solar cells.
In the inverter air-conditioner system, a power factor corrector (PFC) is used to correct the input current to be a sinusoidal waveform to further improve power quality. Furthermore, the PFC can also be used to increase the DC link voltage. The increased DC link voltage is useful for the PWM driving of the inverter. Accordingly, the total harmonic distortion (THD) of the power source will be improved by using the PFC. And the control loop to control thermoelectric cooler helps to save the power consumption for the inverter air conditioner system. The design of experiments (DOE) will be employed to find out the minimum output power for the inverter air conditioner system.
摘 要 I
Abstract II
誌 謝 III
目 錄 IV
圖目錄 VII
表目錄 XII
符號索引 XIII
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 3
1.3 論文架構 3
第二章 太陽能光電系統 7
2.1 太陽能光電池光電轉換原理 7
2.2 太陽能最大功率追蹤 12
2.2.1 電壓迴授法 13
2.2.2 功率迴授法 13
2.2.3 擾動觀察法 13
2.2.4 增量電導法 14
2.2.5 直線近似法 15
2.2.6 實際量測法 15
2.3 太陽能光電系統型式 16
2.3.1 獨立供電型 17
2.3.2 市電併聯型 18
2.4 熱電致冷器原理 18
2.5 熱電致冷器結構 20
第三章 變頻空調系統 23
3.1 空調機原理 23
3.1.1 壓縮機 24
3.1.2 冷凝器 27
3.1.3 膨脹閥 28
3.1.4 蒸發器 30
3.2 無刷直流馬達 30
3.2.1 無刷直流馬達數學模型 31
3.3 無刷直流驅動方式 34
3.3.1 無刷直流基本驅動 34
3.3.2 120度導通方式 34
3.3.3 180度導通方式 37
3.4 直流變頻壓縮機之無感測驅動 40
3.4.1 無感測驅動原理 40
3.4.2 無感測控制器ML4425簡介 42
3.4.3 啟動對正原理與設計 45
3.4.4 斜升驅動原理與設計 48
3.4.5 速度閉迴路原理與設計 49
3.5 功率因數校正 51
3.5.1 功率因數校正原理 54
3.5.2 峰值電流控制法 57
3.5.3 磁滯電流控制法 58
3.5.4 平均電流控制法 60
3.5.5 功率因數校正晶片L4981原理 62
第四章 軟體控制方法 71
4.1 粒子群演算法原理 71
4.2 直交粒子群演算法 74
第五章 硬體架構 79
5.1 最大功率追蹤電路 80
5.2 熱電致冷器控制電路 82
5.3 無感測控制電路 85
5.3.1 三相換流器驅動電路 85
5.3.2 三相換流器電路 86
5.4 功率因數校正電路 88
5.5 其他輔助電路 89
5.5.1 輔助電源電路 89
5.5.2 電流感測器電路 91
5.6 微電腦控制器 93
5.6.1 脈波寬度調變模組功能 94
5.6.2 類比功能 97
第六章 實驗結果分析與探討 99
6.1 太陽能輔助致冷系統 99
6.1.1 最大功率追蹤 99
6.1.2 熱電致冷器 108
6.2 空調機系統 110
6.2.1 功率因數校正 110
6.2.2 無感測驅動 118
第七章 實驗設計方法 122
7.1 田口品質工程 122
7.1.1 信號雜訊比 122
7.1.2 直交表 123
7.1.3 變異數分析 124
7.1.4 品質損失函數 126
7.2 雙反應曲面法 127
7.2.1 設計組合表 130
7.2.2 建構模型 130
7.2.3 參數優化 132
7.3 實驗結果 133
7.3.1 田口方法 133
7.3.2 最佳水準組合推定 137
7.3.3 雙反應曲面法 138
第八章 結論與未來展望 144
8.1 結論 144
8.2 未來展望 144
參考文獻 146
附錄一 詞彙中英對照(依照出現順序) 151
附錄二 網路監控系統 154
作者簡歷 157
[1]BP Statistical Review of World Energy, 2006.
[2]S. R. Bull, “Renewable energy today and tomorrow,” Proceedings of the IEEE, vol. 89, No. 8, pp.1216-1226, 2001.
[3]H. Falk, “Prolog to renewable energy today and tomorrow,” Proceedings of the IEEE, Vol. 89, No. 8, pp.1214-1215, 2001.
[4]Winfried Hoffmann, “Future Solar Electricity Industry – the European Roadmap,” 31st IEEE PV Specialist Conference, Jan 3, p.29, 2005.
[5]Travis Bradford, Solar Revolution the MIT Press, p.146, 2006.
[6]IEA, Photovoltaic Power Systems Programme, http://www.iea-pvps.org/2006.
[7]黃秉鈞,我國太陽能發展的現況與展望,光訊,68期,1997年10月。
[8]王耀諄、李東諭,獨立型太陽能電力系統動態模擬與最佳容量設計,能源季刊,2000年7月。
[9]M. Shahidehpour and F. Schwartz, “Don’t Let the Sun GO Down on PV,” IEEE Power & Energy Magazine, pp.40-48, June, 2004.
[10]陳家宏,“太陽能電池最大功率點追蹤之設計與製作”,私立淡江大學電機研究所碩士論文,2001年。
[11]Z. Salameh, F. Dagher, and W. A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,”Solar Energy, vol. 46, No. 1, pp. 278-282, 1991.
[12]K. Harada and G. Zhao, “Controlled Power Interface Between Solar Cells and AC source,”IEEE Trans. On Power Electronics, vol. 8, No. 4, pp. 654-662, Oct. 1993.
[13]Z. Salameh, F. Dagher, and W.A. Lynch, “Step-Down Maximum Power Point Tracker for Photovoltaic System,”Solar Energy, vol. 46, No. 1, pp. 278-282, 1991.
[14]O.Wasynczuk, “Dynamic Behavior of a Class of Photovoltaic Power System,”IEEE Trans. on Power Apparatus and System, vol. 102, No. 9, Sep. 1983.
[15]F. Harashima, H. Inaba ,and N. Takashima,et al.,“Microprocessor-Controlled SIT Inverter for Solar Energy System,” IEEE Trans. On Industrial Electronics, vol. 34, No. 1, pp. 50-55, Feb. 1987.
[16]K.H. Hussein, I. Muta,T. Hoshino ,and M. Osakada, “Maximum Photovoltaic Power Tracking: an algorithm for rapidly changing atmospheric conditions,” IEEE proc. Gener. Transm. Distrib, vol. 142, No. 1, pp. 59-64, Jan. 1995.
[17]Hua Chihchiang and Shen Chihming, “Control of DC/DC converters for solar energy system with maximum power tracking, ” 1997. IECON 97. 23rd International Conference on Industrial Electronics, Control and Instrumentation, vol. 2, pp. 827-832, 1997.
[18]Ching-Tsai Pan, Jeng-Yue Chen, Chin-Peng Chu, and Yi-Shuo Huang,” A Fast Maximum Power Point Tracker for Photovoltaic Power Systems,” Proceedings of IECON ''99. vol. 1, pp. 390-393, 1999.
[19]C. Wu, “Analysis of waste-heat thermoelectric power generators,” Applied Thermal Engineering, vol. 16, pp. 63-69, 1996.
[20]Z. H. Dughaish, “Lead telluride as a thermoelectric material for thermoelectric power generator,” Physica B, vol. 322, pp. 205-223, 2002.
[21]D. X.C. Xuan, Li, “Optimization of a combined thermionic-theroelectric generator,” Joural of Power sources, vol. 115, pp. 167-170, 2003.
[22]Roy J. Dossat, Principles of refrigeration, 3rd ed., 1991.
[23]B.N. Chaudhari and B.G Fernandes, “Performance of line start permanent magnet synchronous motorwith single-phase supply system,” IEE Proceedings of Electric Power Applications, vol. 151, No. 1, pp. 83-90, Jan. 2004.
[24]K. Iizaka and H. Uzuhashi, “Microcomputer Control for Sensorless Brushless DC Motor,” IEEE Trans. Ind. Application, vol. 21, No. 4, pp. 595-601, 1985.
[25]S. Ogasawara and H. Akagi, “An approach to position sensorless drive for brushless DC motor,” IEEE Trans. Ind. Application, vol. IA-27, No. 5, pp. 928-933, Oct. 1991.
[26]T.H. Kim, B.K. Lee, and M. Ehsani,”Sensorless Control of BLDC Motor from Near Zero to High Speed,” Eighteenth Annual IEEE Appliend Power Electronics Conference and Exposition, pp. 306-312, Feb. 2003.
[27]J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Trans. Power Electron., vol. 13, No. 5, pp. 969-977, Sept. 1998.
[28]K. Iizaka, H. Uzuhashi, et. al., “Microcomputer control for sensorless brushless DC motor,”IEEE Trans. Industry Applicaion., vol. 21, 1985.
[29]R.C. Becerra, T.M. Jahns, and M. Ehsani, “Four-quadrant sensorless brushless ECM drive,” in Proc. IEEE-APEC Conf., pp. 202-209, 1991.
[30]D.H. Jung and I.J. Ha, “Low-cost sensorless control of brushless DC motors using frequency-independent phase shifter,” IEEE Trans. Power Electron., vol. 15, No. 4, pp.744-752, July 2000.
[31]K.J. Binns, D.W. Shimmin ,and K. M. Al-Aubidi, “Implicit rotor position sensing using motor winding for a self commutating permanent drive system,” IEE Proc. Pt. B., vol. 138, No. 1, pp. 28-34, 1991.
[32]M.D. Erdman, H.B. Harms, and J.L. Oldenkamp, “Electronically commutated DC motors for the appliance industry,” IEEE IAS Conf. Rec., pp. 1339-1345, 1984.
[33]K. Iizuka, H. Uzuhashi, et al., “Microcomputer control for sensorless brushless motor,: IEEE Trans. on Ind. Application, pp. 595-601, 1985.
[34]P. Ferrais, A. Vagati, and F. Villata, “PM brushless motor drives: a self commutation system without rotor-position,” Proc. of the 9th Annual Symposium on Incremental Motion Control System and Devices, pp. 305-312, 1980.
[35]N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. on Ind. Electron., vol. 43, pp. 300-308, 1996.
[36]M. Tomita, T. Senjyu, S. Doki, and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. on Ind. Electron., vol. 45, pp. 274-282, 1998.
[37]R.L. Lin, M.T. Hu, S.C. Chen, and C.Y. Lee, “Using phase-current sensing circuit as the position sensor for brushless DC motors without shaft position sensor,” IEEE IECON, pp. 215-218, 1989.
[38]R.C. Becerra, T.M. Jahns, and M. Ehsani, “Four-quadrant sensorless brushless ECM drive,” IEEE APEC, pp. 202-209, 1991.
[39]T.H. Liu and C.P. Cheng, “Adaptive control for a sensorless permanent-magnet synchronous motor drive,” IEEE IECON, pp. 413-418, 1992.
[40]Hyeong-Gee Yee, Chang-Seok Hong, Ji-Yoon Yoo, Hyeon-Gil Jang, Yeong-Don Bae, and Yoon-Seo Park, “Sensorless drive for interior permanent magnet brushless DC motors,” IEEE Electric Machines and Drives Conference Record, pp. TD1/3.1 -TD1/3.3 , 1997.
[41]O. Shinkawa, K. Tabata, A. Uetake, T. Shimoda, S. Ogasawara, and H. Akagi, “Wide speed operation of a sensorless brushless DC motor having an interior permanent magnet rotor, ” Power Conversion Conference, pp. 364-370, 1993.
[42]J.X. Shen and K.J. Tseng, "Analyses and Compensation of Rotor Position Detection Error in a Sensorless PM Brushless DC Motor," International Conference on Electric Machine and Drives, pp. 81 -83, 1999.
[43]Datasheet of ML4425, Micro Linear, July, 2000.
[44]R. Redl and B. P. Erisman, “Reducing distortion in Peak Current Controlled Boost Power-Factor Correctors,” IEEE APEC, pp. 584-590, 1994.
[45]C. Zhou, R. B. Ridley, and F. C. Lee, “Design and Analysys of a Hysteretic Boost Power Factor Correction Circuit,” IEEE PESC, pp. 800-807, 1990.
[46]J. Sebastian, M. Jaureguizar, and J. Uceda, “An overview of power factor correction in single-phase off-line power supply systems,” IEEE International Conference on Industrial Electronics, Control and Instrumentation, vol. 3, pp. 1688-1693, Sept. 1994.
[47]Datasheet of L4981, SGS-THOMSON, 1997.
[48]J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” IEEE International Conference on Neural Networks, vol. 4, pp.1942-1948, 1995.
[49]J. Kennedy and R. Eberhart, “A Discrete Binary Version of the Particle Swarm Algorithm,” IEEE International Conference on Systems, Man, and Cybernetics, vol.5, pp.4104-4108, 1997.
[50]V.G. Gudise and G.K. Venayagamoorthy, “Comparison of Particle Swarm Optimization and Backpropagation as Training Algorithms for Neural Networks,” Proceedings of the IEEE Swarm Intelligence Symposium, pp. 110-117,April 2003.
[51]T.C. Liu and J.C. Wang, “A Discrete Particle Swarm Optimizer for Graphic Presentation of GMDH Network”, IEEE International Conference on Systems, Man and Cybernetics, vol. 3, pp. 2329-2333, Oct. 2005.
[52]H.C. Choi and S.Y. Oh, “Face Detection in Static Images using Bayesian Discriminating Feature and Particle Attractive Genetic Algorithm,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1072-1077, Aug. 2005.
[53]Y. Shi and R. Eberhart, “A modified Particle swarm optimization, ” in Proc. of IEEE International Conference on Evolutionary Computation(ICEC), pp.69-72, May 1998.
[54]R. C. Eberhart and Y. Shi, “Comparing inertia weights and constriction factors in particle swarm optimization,” in Proc. Congress on Evolutionary Computation , pp. 84–88, 2000.
[55]S. Y. Ho, H. S. Lin, W. H. Liauh, and S. J. Ho, "OPSO: Orthogonal Particle Swarm Optimization and Its Application to Task Assignment Problems," IEEE Trans. On Systems, Man, and Cybernetics, Part A,vol. 38,No. 2, pp. 288-298, March 2008.
[56]曾百由,ds-PIC數位訊號控制器原理與應用,宏友圖書開發股份有限公司,2005年。
[57]G. Taguchi, “Off-Line and On-Line Quality Control Systems,” Proceedings of International Conference on Quality, Tokyo, Japan, 1978.
[58]E.D. Castillo and D.C. Montgomery, “A nonlinear programming solution to the dual response problem,” Journal of Quality Technology, 25, pp. 199-204, 1993.
[59]S.K. Fan and E.D. Castillo, “Calculation of an optimal region of operation for dual response systems fitted from experimental data,” Journal of the Operational Research Society, pp. 826-836, 1999.
[60]葉怡成,實驗計劃法-製程與產品最佳化,五南圖書出版公司,2001年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top