跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 20:14
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

Author my cdr record
 
twitterline
Author:林佑泰
Author (Eng.):You-Tai Lin
Title:高頻微機械橋式濾波器之研製
Title (Eng.):High-Q HF Bridged Micromechanical Filters
Advisor:李振榮李振榮 author reflink
advisor (eng):Chen-Jung Li
degree:Master
Institution:國立高雄第一科技大學
Department:機械與自動化工程所
Narrow Field:工程學門
Detailed Field:機械工程學類
Types of papers:Academic thesis/ dissertation
Publication Year:2008
Graduated Academic Year:96
language:Chinese
number of pages:114
keyword (chi):微機電系統型態因子雙端自由樑共振器帶通濾波器品質因子
keyword (eng):free-free beam resonatorband-pass filterquality factorshape factorMEMS
Ncl record status:
  • Cited Cited :0
  • HitsHits:179
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:0
  • gshot_favorites title msgFav:0
本研究主要是以微機械雙端自由樑式共振器搭配扭轉式耦合樑為基本架構之帶通濾波器,將共振器個數提高為三個,相鄰之共振器以扭轉式耦合樑將其連接,另外將不相鄰之共振器利用扭轉式橋樑做一新的連接,並以靜電式驅動及電容式輸出感測,研製具高選擇性之高頻微機械橋式帶通濾波器。此一設計能改善過去雙端固定樑式共振器在高頻範圍時所引發的固定點流失之問題,保持較高的品質因子;將共振器個數提高為三個,能降低型態因子使得微濾波器之頻率響應更接近理想濾波器;橋樑之設計會在濾波器轉移函數中產生衰減極點,可做為一個前饋控制途徑,衰減極點位置導致訊號從通帶區至截止區中快速衰減。本研究藉由設計微機械濾波器之結構尺寸以達到濾波器特性規格,並以電腦軟體模擬濾波器之頻率響應,藉以輔助濾波器之設計;所設計濾波器之實驗驗證,其製程是以微機電系統技術技術之面型微加工技術製作,並量測濾波器特性,將與電腦模擬相互驗證,以完成整個高頻微機械橋式濾波器之研製。
This search uses three micromechanical free-free beam resonators and several torsional coupling beams to develop a high-Q bridged band-pass filter. The bridged filter utilizes a torsional coupling beam to link adjacent resonators and a torsional bridging beam to link non-adjacent resonators, and adopts electrostatic actuation and capacitive sensing. The design can improve the energy loss problem at the anchoring points for the filters using the clamped-clamped beam resonators and keep a higher quality factor at the HF range. The micro filter with the number of resonators increased to three can reduce the shape factor such that its frequency response can be close to that of the ideal filter. The bridged design introduces a feedforward path that generates loss poles in the filter’s transfer function, leading to a faster roll-off from passband to stopband. The micromechanical filter design and computer simulation are conducted to obtain the characteristics of the filter and its frequency response. The fabrication of the filter adopts the MEMS surface micromachining processes. Experiments are also conducted to verify the design of the filter.
中文摘要 I
英文摘要 II
誌 謝 III
目 錄 IV
表目錄 VII
圖目錄 VIII
符號說明 X
第1章 緒 論 1
1.1 研究動機 1
1.2 文獻回顧 3
1.3 研究目的 16
1.4 論文貢獻 19
1.5 論文架構 20
第2章 原理與原型設計 21
2.1 濾波器原理 21
2.2 微機械橋式濾波器之架構 24
2.3 微機械橋式濾波器之工作原理 27
2.3.1 平行板電容器 27
2.3.2 微機械橋式濾波器致動、感測與濾波原理 29
2.3.3 微機械橋式濾波器之頻率響應 33
2.4 微機械橋式濾波器之結構設計 34
2.4.1 共振器之選擇 34
2.4.2 耦合樑、橋樑之設計 35
第3章 分析與設計 37
3.1 微機械共振式帶通濾波器之頻率響應分析 37
3.1.1 建立等效機械模型 38
3.1.2 建立等效電路模型 41
3.2 微機械橋式濾波器之結構尺寸設計 43
3.2.1 雙端自由樑式共振器尺寸設計 43
3.2.2 扭轉式耦合樑、橋樑尺寸設計 44
3.2.3 濾波器帶通頻寬漣波現象之改善 46
3.3 微機械濾波器結構尺寸對濾波器特性規格之模擬結果 47
3.3.1 橋式濾波器參數設計與分析 47
3.3.2 以PSPICE軟體分析濾波器之等效電路系統頻率響應 50
3.3.3 以ANSYS軟體模擬出橋式濾波器之自然頻率 54
3.3.4 以Intellisuite軟體模擬輸入直流偏壓對共振頻率之影響 57
3.4 微機械濾波器能量流失之主因 62
3.4.1 固定點能量流失(Clamping loss) 62
3.4.2 熱彈性能量流失(Thermoelastic energy dissipation,TED) 65
3.4.3 空氣阻尼之影響(Air Damping Effect) 67
3.4.4 微機械式濾波器能量流失總結 67
第4章 製程規劃與實驗驗證 68
4.1 製程規劃與步驟 68
4.2 光學顯微鏡拍攝濾波器實體圖 72
4.2.1 橋式濾波器OM拍攝實體圖 72
4.2.2 實驗製程結果討論 77
4.3 量測設備與架設 78
4.4 量測步驟 79
4.5 實驗驗證 80
第5章 結論與未來展望 83
5.1 研究成果總結 83
5.2 未來展望 85
參考文獻 86
附錄一 網路分析儀 89
附錄二 扭轉式耦合樑等效質量之推導 91
附錄三 扭轉與橫向運動轉換參數之推導 93
附錄四 真空度對阻尼之關係 95
附錄五 電阻對時間常數之影響 96
[1]R. A. Johnson, “Mechanical filters in electronics”, Wiley series on filters, 1982.
[2]L. Lin; R.T. Howe and A.P. Pisano, “Microelectromechanical filters for signal processing,” Journal of Microelectromechanical Systems, vol. 7, pp. 286-294, 1998.
[3]K. Wang, C. T. –C. Nguyen, “High-Order Micromechanical Electronic Filters,” Proceedings of the 1997 10th Annual International Workshop on Micro Electro Mechanical Systems, pp. 25-30, 1997.
[4]K. Wang, C. T. –C. Nguyen, “High-order medium frequency micromechanical electronic filters”, Journal of Microelectromechanical Systems, vol. 8, pp. 534-556, 1999.
[5]S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “Disk-array design for suppression of unwanted modes in micromechanical composite-array filters,” Tech. Digest, 19th IEEE Int. Conf. on Micro Electro Mechanical Systems, pp. 866-869, 2006.
[6]S.-S. Li, Y.-W. Lin, Z. Ren, and C. T.-C. Nguyen, “An MSI micromechanical differential disk-array filter,” Dig. of Tech. Papers, the 14th Int. Conf. on Solid-State Sensors & Actuators, pp. 307-311, 2007.
[7]Frank D. Bannon, III, John R. Clark, Clark T. –C. Nguyen, “High Q HF microelectromechanical filters,” IEEE J. of Solid-State Circuits, vol. 35, no. 4, 2000.
[8]Li, Sheng-Shian Demirci, Mustafa U., Lin, Yu-Wei, Ren, Zeying, Nguyen, Clark T.-C., “Bridged micromechanical filters” Proceedings of the IEEE International Frequency Control Symposium and Exposition, Proceedings of the 2004 IEEE International Frequency Control Symposium and Exposition. A Conference of the IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society (UFFC-S), pp. 280-286, 2005.
[9]K. Wang, Y. Yu, A.-C. Wong and C. T. –C. Nguyen, “VHF Free-Free Beam High-Q Micromechanical Resonators,” Micro Electro Mechanical Systems, pp. 453 – 458, 1999.
[10]林勝國,“微機械雙端自由樑式高頻濾波器之研製” 國立高雄第一科技大學 系統與控制工程研究所碩士論文,民國九十四年。
[11]C. T.-C. Nguyen, “Integrated micromechanical circuits fueled by vibrating RF MEMS technology,” Proceedings, IEEE Int. Ultrasonics Symposium, pp. 953-962, 2006.
[12]K. Y. Yasumura, “Quality factor in micron- and submicron-thickcantilevers”, Journal of Microelectro-mechanicalsystems, vol. 9, no. 1, pp. 117-125, 2000.
[13]Y.-H. Park and K.C. Park, “High-fidelity modeling of MEMS resonators. Part I. Anchor loss mechanisms through substrate,” Journal of Microelectromechanical Systems, vol. 13, pp. 238-247, 2004.
[14]J. Wang, Z. Ren and C. T.-C. Nguyen, “1.156-GHz self-aligned vibrating micromechanical disk resonator,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 51, no. 12, pp. 1607-1628, 2004.
[15]袁敏事編著,2004,通訊電子學,全華科技圖書公司。
[16]通訊元件教學中心主編,2007,微波積體電路設計,教育部顧問室。
[17]D. K. Cheng, “Field and Wave Electromagnetics, 2nd Edition”, Addison Wesley, 1989.
[18]葉錦智編著,2001,射頻電路設計與實習,古今文化圖書公司。
[19]F.P. Beer, E.R. Johnston and J.T. Dewolf, “Mechanics of materials 2nd edtion”, Mc Graw Hill, 1992.
[20]W.T. Thomson, “Theory of vibration with applications”, Prentice Hall, 1993.
[21]W. C. Tang, C. T.-C. Nguyen and R. T. Howe, “Laterally Driven Polysilicon Resonant Microstructures,” 2nd IEEE Micro Electro Mechanical Systems Workshop, pp. 53-59, 1989.
[22]C. T.-C. Nguyen, “Micromechanical signal processors”, Phd. Dissertation, UC Berkeley, 1994.
[23]A. I. Zverev, “Handbook of Filter Synthesis”, Wiley, 1968.
[24]J. B. Starr, “Squeeze-film damping in solid-state accelerometers”, IEEE Solid-State Sensor and Actuator Workshop, pp. 44-47, 1990.
[25]Kevin Y. Yasumura, “Quality factor in micron- and submicron-thickcantilevers”, Journal of Microelectro-mechanicalsystems, vol. 9, no. 1, pp. 117-125, 2000.
[26]R. N. Candler and H. Li, “Investigation of energy loss mechanisms in micromechanical resonators,” 12th International Conference on Solid-State Sensors and Actuators, vol. 2, pp. 332-335, 2003.
[27]T. V. Roszhart, “The effect of thermoelastic internal friction on the Q of micromachined silicon resonators”, IEEE Solid-State Sensor and Actuator Workshop, pp. 13-16, 1990.
[28]D. A. Koester, R. Mahadevan, A. Shishkoff and K. W. Markus, “MUMPs™ Design Handbook Revision 4.0”, Cronos Integrated Microsystems, 1999.
[29]S. R. Huang, “Multi Project MEMS Chip (MPMC) Introduction and Design Rules”, NSC Central Regional MEMS Center, 2000.
[30]“DataSheets of LM6177 High Speed Low Power Low Distortion Voltage Feedback Amplifier”, National Semiconductors, 2003.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related journal articles
 
system icon system icon