跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俐妤
研究生(外文):Li-Yu Liu
論文名稱:影響運動彩券網路系統採用相關因素之探討
論文名稱(外文):Exploring Factors Influencing the Adoption of Online Sports Lottery
指導教授:邱彥婷邱彥婷引用關係
指導教授(外文):Yen-Ting Chiu
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:行銷與流通管理所
學門:商業及管理學門
學類:行銷與流通學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:83
中文關鍵詞:知覺風險整合型科技接受模式彩券
外文關鍵詞:LotteryPerceived RiskUTAUT
相關次數:
  • 被引用被引用:2
  • 點閱點閱:273
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著全球運動風氣的提升,開放合法運動彩券銷售的國家亦日趨增多。根據各發行機關統計,截至2000年全球運動彩券市場規模僅50億美元,但2006年已成長至151.4億美元。整體而言,全球運動彩券市場平均年度複合成長率達13%,高於全體彩券市場平均年度複合成長率9%的水準。
國外運動彩券的發展早已行之有年,而台灣的運動彩券亦在國外運彩問世70多年後於日前初試啼聲,而網路、電話等虛擬通路的投注預計將在今年中正式上路。運動彩券線上投注不容分秒差池,需要有縝密而完善的網路規劃和備援方案以確保網路系統的穩定性。
有別於彩券消費者以往慣有的實體通路投注經驗,未來運動彩券虛擬通路正式啟動,潛在的運彩客群在由實體通路轉換為虛擬通路的投注過程中是否會受到其它因素的影響,本研究擬針對此一新型態的投注方式,在系統上市之前,透過整合型科技接受模式 (Unified Theory of Acceptance and Use of Technology, UTAUT)為研究基礎架構,加入「知覺風險」構面,據以研究彩券消費者對於線上投注系統的採用意願。
研究結果發現,「努力期望」並不如預期的會影響投注者對於線上投注系統的採用態度;而在其它產業影響並不顯著的「便利條件」,卻對投注者在此系統的採用態度及意願上有顯著的影響。而「知覺風險」、「績效期望」和「社會影響」等三構面也會影響投注者的採用態度。本研究亦針對「性別」、「年齡」、「教育程度」和「網路的使用經驗」等干擾變數進行分析;其中「網路的使用經驗」對於「績效期望」有干擾作用,「年齡」會影響「努力期望」、「社會影響」和「便利條件」,但「性別」和「教育程度」卻無顯著的干擾效果。本研究針對問卷統計分析結果,據此提出研究結論與建議,以作為彩券主管機關未來推動線上投注系統之參考。
With the growth of the global online betting, to understand online bettor behavior is critical to researchers and practitioners. Taiwan’s first online betting system will inaugurate in the near future, a large number of factors will influence the adoption of new technology. Some consumers will put up barriers against the acceptance of new technology but others may perceive an innovation as the solution to a problem and adopt it immediately. In order to have a better understanding of the potential online betting market, this article will address consumer perspectives of online sports lottery.
For investigating the likelihood of acceptance or new technology, we propose a theoretical model that augments the Unified Theory of Acceptance and Use of Technology (UTAUT) with a new construct, perceived risk. This study tries to explore the core determinants of consumer adoptive attitude and intention.
The results argue that the perception of risk has much to do with adoptive attitude. Several studies have suggested that facilitating conditions do not have significant influence on behavioral attitude; however, this study indicates the positive effect is obvious. This study discusses constructs affecting consumer adoption behavior, explores managerial implication and also identifies future research direction.
CHINESE ABSTRACT ………………………………………..…………. i
ENGLISH ABSTRACT ……………………………………….…………. ii
ACKNOWLEDGEMENTS ………………………….………………….. iii
CONTENTS …………………………………………………..…………. iv
LIST OF TABLES ………………………………………………………. vii
LIST OF FIGURES ………………………………………………..….. viii

Chapter 1. Introduction ............................................................................ 1
1.1 Research Background ................................................................ 1
1.2 Research Motivation ………………………………………...… 2
1.3 Research Objectives ………………………………………….... 3
1.4 Research Process …………………………………………….… 3
Chapter 2. Literature Review …………………………………………... 5
2.1 Introduction to Lottery Games ………………………………... 5
2.1.1 Development of Sports Lottery …………………….… 5
  2.1.2 Effects of Online Betting …………………………….. 8
2.2 Perceived Risk ………………………………………………... 9
2.2.1 Definition and Description of Perceived Risk ……….. 9
2.2.2 Perceived Security ……………………………………10
  2.2.3 Perceived Privacy ………………………………….… 11
2.3 A Review of the Technology Acceptance Models ………….... 12
2.3.1 Theory of Reasoned Action (TRA) ……………….… 12
2.3.2 Technology Acceptance Model (TAM) ……………... 13
2.3.3 Theory of Planned Behavior (TPB) …………………. 15
2.3.4 Combined TAM and TPB (C-TAM-TPB) …………... 18
2.3.5 Motivational Model (MM) ………………………….. 19
2.3.6 Model of PC Utilization (MPCU) …………………... 20
2.3.7 Innovation Diffusion Theory (IDT) ………………… 22
2.3.8 Social Cognitive Theory (SCT) ……………………... 23
2.3.9 Unified Theory of Acceptance and Use of Technology 25
2.3.10 Adoption of Online Betting………………………… 28
Chapter 3. Method ……………………………………………......…... 29
3.1 Conceptual Model ………………………………….………... 29
3.2 Hypotheses Development …………………………….……… 30
3.2.1 Perceived Risk …………………………………….… 31
3.2.2 Performance Expectancy ………………….………… 31
3.2.3 Effort Expectancy ……………………………….…... 32
3.2.4 Social Influence ………………………………..……. 32
3.2.5 Facilitating Conditions ………………………..…….. 32
3.2.6 Attitude on Betting Online………………………....…32
3.2.7 Moderating Variables …………………………….….. 32
3.3 Definition of Variables and Measures ………………..……... 37
3.4 Questionnaire Design ………………………………………... 38
3.4.1 Instrument Development ………………….………… 38
3.4.2 Data Collection ………………………………….…... 41
3.5 Data Analysis Tools ………………………………………….. 43
3.5.1 Descriptive Statistics………………………………..43
3.5.2 Reliability Analysis …………………………..…… 44
3.5.3 Validity Analysis …………………………………… 44
3.5.4 Factor Analysis ……………………………………… 44
3.5.5 Correlation Analysis ……………………………….... 45
3.5.6 Regression Analysis ……………………………….... 45
3.5.7 Analysis of Covariance (ANCOVA) …………………45
Chapter 4. Data Analysis and Results ……………………………...…. 46
4.1 Sample Description ……………………………………..…… 46
4.2 Reliability and Validity………………………………….……49
4.2.1 Reliability …………………………………………... 50
4.2.2 Content Validity …………………………………….. 50
4.3 Factor Analysis …………………………………….………… 51
4.4 Correlation Analysis ………………………………………… 54
4.5 Regression Analysis ……………………………………….… 55
4.5.1 Hypotheses Testing - Multiple Regression Analysis… 55
4.5.2 Hypotheses Testing - Simple Regression Analysis….. 56
4.6 ANCOVA…………………………………………………….. 58
4.7 Summary of Research Findings ………………………….….. 63
Chapter 5. Conclusions and Suggestions ………………………..…… 66
5.1 Conclusions ………………………………………………….. 66
5.2 Implications ………………………….………………………. 67
5.2.1 Implications for Theory ………………..……………. 67
5.2.2 Implications for Practice ……………………..…….. 68
5.3 Future Research and Limitations …………………….……... 69
References ………………………………………………………..……... 71
Appendix I. Questionnaire (English) …………………………………. 78
Appendix II. Questionnaire (Chinese) ………………………………... 81
1. Agarwal, R. and Prasad J., 1999, “Are Individual Differences Germane to the Acceptance of New Information Technologies?” Decision Sciences, vol. 30, no. 2, pp. 361-391.
2. Bandura, A., 1986, Social Foundations of Thought and Action, Prentice Hall, Englewood Cliffs, NJ.
3. Bart, Y., Shankar V., Sultan F. and Urban G.L., 2005, “Are the Drivers and Role of Online Trust the same for all Web Sites and Consumers? A Large-scale Exploratory Empirical Study”, Journal of Marketing, vol. 69, pp. 133-152.
4. Bauer, R.A., 1960, “Consumer Behavior as Risk Taking”, Dynamic Marketing for a Changing World, American Marketing Association, Chicago, IL, pp. 389-93.
5. Bauer, R. A., 1960, “Consumer Behavior as Risk Taking”, Risk Taking and Information Handling in Consumer Behavior, Donald F. Cox, ed. Cambridge, MA: Harvard University Press, pp. 23-33.
6. Bauer, R.A., 1967, “Consumer behavior as risk taking”, Risk Taking and Information Handling in Consumer Behavior, Cox, D.F. (ed.), Harvard University Press, Cambridge, MA, USA, pp. 389-398.
7. Bellman, S., Lohse, G.., and Johnson, E., 1999, “Predictors of online buying behaviour”, Communications of the ACM, vol. 42(12), pp. 32-38.
8. Bhatnagar, A., Misra, S., and Rao, H., 2000, “On risk, Convenience and Internet Shopping Behavior”, Communications of the ACM, vol. 43, no. 11, pp. 98-105.
9. Burke, R.R., 2002, “Technology and the customer interface: what consumers want in the physical and virtual store”, Journal of the Academy of Marketing Science, vol. 30, no.4, pp.411-32.
10. Campbell, DT. and Fiske, DW., 1959, “Convergent and discriminant validation by the Multi-trait, Multi-methods matrix”, Psychological Bulletin, vol. 56, pp. 82-105.
11. Campbell, M., and Goodstein R., 2001, “The Moderating Effect of Perceived Risk on Consumers’ Evaluations of Product Incongruity: Preference for the Norm”, Journal of Consumer Research, vol. 28, no. 3, pp. 439-49.

12. Chantal, Y. and Vallerand, R., 1996, “Skill versus luck: A motivational analysis of gambling involvement”, Journal of Gambling Studies, vol. 2, pp.407-418.
13. Chau, P., 1996, “An empirical assessment of a modified Technology Acceptance Model”, Journal of Management Information Systems, vol.13, no. 2, pp. 185-204.
14. Compeau, D. R. and Higgins, C. A., 1995, “Computer Self-Efficacy: Development of a Measure and Initial Test”, MIS Quarterly, vol. 19, no.2, pp. 189-211.
15. Corbitt, B.J., 2003, “Trust and e-commerce: a study of consumer perceptions”, Electronic Commerce Research and Applications, vol. 2, no. 3, pp. 203-15.
16. Cox, D. F. and Rich S. J., 1964, “Perceived risk and consumer decision making”, Journal of Marketing Research, vol. 1, pp. 32-39, November.
17. Davis, F. D., 1989, “Perceived usefulness, perceived ease of use, and user acceptance of computer technology”, MIS Quarterly, vol. 13, no. 3, pp. 319-40.
18. Davis, F. D., Bagozzi, R. P. and Warshaw, P. R., 1989, “User acceptance of computer technology: A comparison of two theoretical models”, Management Science, vol. 35, no. 8, pp. 982-1003.
19. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R., 1992, “Extrinsic and Intrinsic Motivation to Use Computers in THE Workplace”, Journal of Applied Social Psychology, vol. 22, no. 14, pp. 1111-1132.
20. Deci, E. L. and Ryan, R. M., 1985, Intrinsic motivation and self-determination in human behavior, New York: Plenum Press.
21. Dekimpe, M.G., Parker, P.M. and Sarvary, M., 2000, “Global diffusion of technological innovations – a coupled-hazard approach”, Journal of Marketing Research, vol. 37, pp. 47-59.
22. Devellis RF., 1991, Scale Development. Sage, Newbury Park, CA.
23. Devellis, R.F., 2003, Scale Development: Theory and Applications, Sage Publications, Thousand Oaks, CA.
24. Dielman, T. E., 1979, “Gambling: A Social Problem?”, Journal of Social Issues, vol. 35, no. 3, pp. 36-43.
25. Dillon, A. and Morris, M., 1996, “User acceptance of information technology: theories and models”, Journal of American Society for Information Science, vol. 31, pp. 3-32.
26. Dowling, G. R., 1999, “Perceived Risk”, The Elgar Companion to Consumer Research and Economic Psychology, Peter E. Earl and Simon Kemp, eds. Cheltenham, UK: Edward Elgar, pp. 419-24.
27. Dowling, G.R. and Staelin, R., 1994, “A model of perceived risk and intended risk-handling activity”, Journal of Consumer Research, vol. 21, pp. 119-34.
28. Featherman, M. and Pavlou, P., 2003, :Predicting e-services adoption: a perceived risk facets perspective”, International Journal of Human-Computer Studies, vol. 59, pp. 451-474.
29. Fishbein, M. and Ajzen, I., 1975, Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research, Addison- Wesley, Reading, MA.
30. Fornell, C. and Larcker, D. F., 1981, “Evaluating structural equation models with unobservable variables and measurement error”, Journal of Marketing Research, vol. 18, pp. 39-50.
31. Hair, J.F. , Anderson, R.E., Tatham, R.L. and Black, W.C., 1998, Multivariate Data Analysis, 5th ed., Prentice-Hall, Upper Saddle River, NJ.
32. Herring, M. and Bledsoe, T., 1994, “A Model of Lottery Participation: Demographics, Context, and Attitudes”, Policy Studies Journal, vol. 22, pp.245-257.
33. Igbaria, M., Parasuraman, S., and Baroudi, J. J.,1996, “A motivational model of microcomputer usage”, Journal of Management Information Systems, vol. 13, no. 1, pp. 127-143.
34. Jacoby, J. and L. Kaplan, 1972, “The Components of Perceived Risk,” Annual Conference of the Association for Consumer Research, M. Venkatesan, ed. Chicago: Association for Consumer Research, pp. 382-93.
35. Jarvenpaa, S.L., Tractinsky, N. and Vitale, 2000, “Consumer trust in Internet store”, Information Technology and Management, vol. 1, pp. 45-71.
36. Kelly, E.P. and Erickson, G.S., 2004, “Legal and privacy issues surrounding customer databases and e-merchant bankruptcies: reflections on Toysmart.com”, Industrial Management and Data Systems, vol. 104 no. 3, pp. 209-17.
37. Keynote, 1996, “Betting and Gaming”, Keynote Reports.
38. Levy, J. A.,1988, “Intersections of Gender and Aging”, The Sociological Quarterly, vol. 29, no. 4, pp. 479-486.
39. Li, H., Kuo, C. and Russell, M. G., 1999, “The Impact of Perceived Channel Utilities, Shopping Orientations, and Demographics on the Consumer’s Online Buying Behavior”, Journal of Computer-Mediated Communication, vol. 5, no. 2.
40. Liu, X. and Wei, K.K., 2003, “An empirical study of product differences in consumers’ e-commerce adoption behavior”, Electronic Commerce Research and Applications, vol. 2, pp. 229-239.
41. Lu, J., Yu, C., Liu, C. and Yao, J. E., 2003, “Technology acceptance model for wireless internet, Internet Research”, Electronic Networking Applications and Policy, vol. 13, no. 3, pp. 206-222.
42. Magee, A., 1994, “Compulsive Buying Tendency As a Predictor of Attitudes and Perceptions”, Advances in Consumer Research, vol. 21, pp.590-594.
43. Mahmood, M. A., Bagchi, K. and Ford, T. C., 2004, “On-Line Shopping Behavior: Cross-Country Empirical Research”, International Journal of Electronic Commerce, vol. 9, no.1, pp. 9-30.
44. Mitchell, V.W., Davies, F., Moutinho, L. and Vassos, V., 1999, “Using neural networks to understand service risk in the holiday product”, Journal of Business Research, vol, 46, pp. 167-80.
45. Miyazaki, A.D. and Fernandez, A., 2001, “Consumer perceptions of privacy and security risks for online shopping”, Journal of Consumer Affairs, vol. 35, no. 1, pp. 27-44.
46. Moore, G. C. and Benbasat, I., 1991, “Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation”, Information Systems Research, vol. 2, no. 3, pp. 192-222.
47. Moon, J.W. and Kim, Y.G. ,2001, “Extending the TAM for a World-Wide-Web context”, Information & Management, vol. 38, no. 4, pp. 217-230.
48. Murry, K. B. and Schlacter, J.L., 1990, “The impact of services versus goods on consumer’s assessment of perceived risk and variability”, Journal of the Academy of Marketing Science, vol. 18, no. 1, pp.51-65.
49. Oppliger R, 1997, “Internet Security: Firewalls and Beyond”, Communications of the ACM, vol. 40, no.5, pp. 92-102, May.
50. Park, J., Lee, D. and Ahn, J., 2004, “Risk-focused e-commerce adoption model: a
cross-country study”, Journal of Global IT Management, vol. 7, pp. 6-30.
51. Pavlou, P. A., 2003, “Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model”, International Journal of Electronic Commerce, vol. 7, no.3, pp. 101-134, Spring.
52. Peter, J., Ryan, M., 1976, “An Investigation of Perceived Risk at the Brand Level,” Journal of Marketing Research, vol.13, pp. 184-188, May.
53. Ranganathan, C. and Ganapathy, S., 2002, “Key dimensions of business- to- consumer web sites”, Information and Management, vol. 39, pp. 457-465.
54. Rohm, Andrew J. and George R. Milne, 1998, “Emerging Marketing and Policy Issues in Electronic Commerce: Attitudes and Beliefs of Internet Users”, Marketing and Public Policy Proceedings, vol. 8, Alan Andreasen, Alcx Simonson, and N. Craig Smith, eds. Chicago: American Marketing Association, pp. 73-79.
55. Rogers, E.M.,1995, Diffusion of Innovations, New York: Free Press.
56. Scherhorn, G., Reisch, L. A. and Gerhard, C., 1990, “Addictive Buying in West Germany: An Empirical Study”, Journal of Consumer Policy, vol.13, pp. 355-388, November.
57. Shaffer, H. J. and Hall, M. N., 2001, “Updating and refining prevalence estimates of disordered gambling behavior in the United States and Canada”, Canadian Journal of Public Health, vol.92, pp.168-172.
58. Shoaf, F. R., Scattone, J., Morrin, M. and Maheswaran, D., 1995, “Gender Differences in Adolescent Compulsive Consumption”, Advances in Consumer Research, vol. 22, pp. 500-504.
59. Stinchfield, R., Cassuto, N., Winters, K., and Latimer, W., 1997, “Prevalence of gambling among Minnesota public school students in 1992 and 1995”, Journal of Gambling Studies, vol. 13, pp. 25-48.
60. Stone, R.N. and Gronhaug, K., 1993, “Perceived risk: further considerations for the marketing discipline”, European Journal of Marketing, vol. 27, no. 3, pp. 39-50.
61. Susskind, A., 2004, “Electronic Commerce and World Wide Web Apprehensiveness: An Examination of Consumers’ Perceptions of the World Wide Web”, Journal of Computer-Mediated Communication, vol. 9, no. 3.
62. Szajna, B.,1996, “Empirical Evaluation of the Revised Technology Acceptance Model”, Management Science, vol. 42, no.1, pp. 85-92.
63. Tan, S., 1999, “Strategies for reducing consumers risk aversion in internet shopping”, Journal of Consumer Marketing, vol. 16, no. 2, pp. 163-80.
64. Taylor, S. and Todd, P. A., 1995, “Assessing IT Usage: The Role of Prior Experience”, MIS Quarterly, vol. 19, no.2, pp. 561-570.
65. Taylor, S. and Todd, P.A., 1995, “Understanding information technology usage: a test of competing models”, Information Systems Research, vol. 6 no. 2, pp. 144-76.
66. Teo, T., 2001, “Demographic and motivation variables associated with Internet usage activities”, Internet Research, vol. 11, no. 2, pp. 125-137.
67. Teo, T. and Pok, S. H., 2003, “Adoption of WAP-enabled mobile phones among Internet users”, Omega: The International Journal of Management Science, vol. 31, no. 6, pp. 483-498.
68. Teo. T. and Yeong, Y.D., 2003, “Assessing the customer decision process in the digital marketplace”, Omega, vol. 31, pp. 349-363.
69. Thompson, R. L., Higgins, C. A., and Howell, J. M., 1991, “Personal computing: Toward a conceptual model of utilization”, MIS Quarterly, vol.15, no.1, pp.125-143.
70. Triandis, H. C.,1971, Attitude and Attitude Change, John Wiley and Sons, Inc., New York, NY.
71. Triandis, H. Values, 1979, “Attitudes and interpersonal behavior”, Nebraska Symposium on Motivation, 1979: Beliefs, Attitudes and Values, pp. 195-259.
72. Vallerand, R. J., 1997, “Toward a Hierarchical Model of Intrinsic and Extrinsic Motivation,” Advances in Experimental Social Psychology, vol. 29, M. Zanna (ed.), Academic Press, New York, pp. 271-360.
73. Van der Heijen, H., Verhagen, T. and Creemers, M., 2003, “Understanding online
purchase intentions: contributions from technology and trust perspectives”, European Journal of Information Systems, vol. 2, pp. 41-48.
74. Venkatesh, V. and Davis, F. D., 2000, “A theoretical extension of the technology acceptance model: four longitudinal field studies”, Management Science, vol. 46, no. 2, pp. 186-204.
75. Venkatesh, V. and Morris, M. G., 2000, “Why Don’t Men Ever Stop To Ask for Directions? Gender, Social Influence, and Their Role in Technology Acceptance and Usage Behavior,” MIS Quarterly, vol. 24, no. 1, pp. 115-139.
76. Venkatesh, V., Morris, M. G., Davis G. B., and Davis F. D., 2003, “User acceptance of information technology: toward a unified vies”, MIS Quarterly, vol. 27, no. 3, pp. 425-478.
77. Venkatesh, V., and Speier, C., 1999, “Computer Technology Training in the Workplace: A Longitudinal Investigation of the Effect of the Mood”, Organizational Behavior and Human Decision Processes, vol. 79, no. 1, pp. 1-28.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊