(3.239.33.139) 您好!臺灣時間:2021/03/08 17:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡馥如
研究生(外文):Fu-Ju Tsai
論文名稱:熱加工對不同pH值蜂蜜模擬系統抗氧化能力及相關成分之影響
論文名稱(外文):Effect of thermal treatment on antioxidant capacity and related components of honey in different pH model system
指導教授:蔡碧仁
指導教授(外文):Pijen Tsai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:蜂蜜熱加工pH抗氧化力非酵素性褐變
外文關鍵詞:honeythermal processingpHantioxidant capacitynon-enzymatic browning
相關次數:
  • 被引用被引用:0
  • 點閱點閱:629
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
蜂蜜為天然的甜味物質及抗氧化劑,其風味深受人們所喜愛,常被應用在糕餅類等高溫烤焙產品或塗抹於烤鴨上,但有關高溫烤焙對其抗氧化力之影響卻鮮少有資料。因此,本研究針對蜂蜜進行低 (40℃)、中 (100℃) 及高溫 (180℃) 的熱加工,在不同pH值 (pH 2, 4, 6及8) 的模擬系統中,探討其色澤品質、抗氧化力及相關成分 (多酚及褐變色素) 之變化。並模擬烤鴨之烤焙環境進行加熱,探討不同貯藏方式對其抗氧化力之影響。結果顯示,在色澤品質方面,低溫 (40℃) 處理之模擬系統的△E變化幅度並不顯著,將溫度提升至中 (100℃) 及高溫 (180℃) 時,可發現色澤變化程度顯著增加。在高溫 (180℃) 加熱下,pH 8者,在熱加工處理80分鐘即可達到pH 6者加熱120分鐘的色澤程度。UV可吸收性物質 (A254) 和褐變指標 (A420) 隨加工環境pH值及加工溫度增加而增加,尤其以pH 8、180℃加熱者效果最為顯著。由RUV/brown可看出在180℃加熱下,pH 6與pH 8者之數值隨著加熱時間增加而逐漸減少,顯示加工環境與溫度對蜂蜜的色澤影響甚大。在抗氧化力方面,低溫加熱對其DPPH自由基清除能力以及FRAP還原能力影響並不顯著,但中、高溫加熱時,可發現,隋著加熱溫度及時間的升高,其抗氧化能力隨之提升,尤其以鹼性環境下的pH 8者最為顯著。在180℃加熱120分鐘期間,DPPH自由基清除能力由53%增加至73.9%,FRAP還原能力則是增加了9倍 (由904.6 μmole/L提升至8456 μmole/L)。進一步統計分析發現,pH 6與pH 8蜂蜜溶液在中、高溫加熱下,其A254、A280及A420與抗氧化能力成高度正相關,顯然蜂蜜的抗氧化力與其受熱後褐變的程度有關。
蜂蜜富含酚類,本研究中總酚含量隨加熱溫度及時間增加而增加,尤其以pH 8者最為顯著,推測是由於加熱破壞分子間的鍵結,使其分子內的酚類被釋放,故導致酚類隨加熱溫度提升而增加。
蜂蜜溶液主要的醣類為果糖和葡萄糖,至於蜂蜜中醣類受熱的變化本研究發現在酸性環境下,其所含的醣類會隨加熱溫度增加而隨之提升,也許是因為酸水解導致單醣被釋放所致。而隨著環境pH值的提升,糖濃度亦隨加熱溫度的增加而降低,顯示醣類可能與胺基酸結合產生梅納反應,亦或是因高溫而產生焦糖化反應。進一步以代表梅納反應的中間產物HMF,及焦糖反應的中間產物A254去推敲蜂蜜高溫受熱抗氧化力的機制。
褐變中間產物羥甲基糠醛 (HMF) 在高溫加熱下顯著較中、低溫者為低,且高溫加熱者有較高量的UV可吸收性物質 (A254),故推測高溫 (180℃) 加熱下所產生之褐變反應傾向焦糖化,而中 (100℃)、低 (40℃)溫加熱者則傾向於梅納反應。
Honey is a natural sweetner and antioxidant with popular flavor, it was usually applied to baked products or roasted duck. Very few information about the effect of baking temperature on the antioxidant capacity of honey could be found. In this study, thermal processing with low (40℃), medium (100℃) and high temperature (180℃) were conducted through model system at different pH (pH 2, 4, 6 and 8). The changes of their antioxidant capacity and related composition (polyphenol and browning pigment) were investigated. A simulating system of roast duck with heating was applied to discuss the effect of antioxidant capacity by different treatments and storage conditions. Results showed that, for color quality, changes of △E at low (40℃) temperature treatment model system were not significant, when temperature increase at medium and high temperature, but they increased vastly of Heating at high temperature (180℃) in pH 8 system heating 80min showed the same color level when compared with sample heated in pH 6 for 120min. UV absorbance substance (A254) and browning index (A420) were increased with pH value and temperature of process environment increased, especially significant at pH 8 system with heating temperature 180℃. RUV/brown decreased gradually with heating time increased, after heating at 180℃ in both pH 6 and pH 8 system showed that process environment and temperature affect the color of honey significantly. As to the antioxidant capacity, changes of DPPH scavenging capacity and FRAP at low temperature treatment model system were not significant, but at medium and high temperature, they increase with heating temperature and time increased, especially significant. When heated at 180℃ in pH 8 system, for 120min, increased from 53% to 73.9% of DPPH scavenging capacity, and FRAP became 9 folds when compared with the orginal ones (from 904.6μmole/L to 8456μmole/L). Statistical analysis showed that heating at medium and high temperature, antioxidant capacity of honey solution at pH 6 and pH 8 showed a high significantly correlation with A254, A280 and A420. Indicated that antioxidant capacity of honey is highly correlated with browning level after heating.
Honey is rich in polyphenols, In this study total phenol content increased with heating temperature and time, especially significant at pH 8 system.It might be explained by the breakdown of intermolecular bonding and phenol compounds of the inside molecule were released.
Honey solution mainly carbohydrate were fructose and glucose, as to the change of sugar of the honey, fructose and glucose increased with heating temperature increased in pH 2 system. It might be the result of monosaccharide release due to acid hydrolysis. But in the higher pH systems. Sugar concentration decreased with heating temperature increase. It indicated sugar might disappear through maillard reaction or caramelization. Further analysis of HMF (intermediate of maillard reaction) and UV absorbing material(intermediate of caramelization) were used to elucidate the possible mechanism of increase of antioxidant capacity of honey after heating.
Results showed that there is significant amount of HMF and A254 in low or medium temperature heated samples and high temperature neated sample respectively. There for, it suggested that heating at 180℃ might cause caramelization of honey while heating at 100℃ and 40℃ caused maillard reaction.
中文摘要 I
Abstract III
謝誌 VI
目錄 VII
圖表目錄 IX
第1章 前言 1
第2章 文獻回顧 3
2.1 蜂蜜之介紹 3
2.1.1 蜂蜜之物理特性 3
2.1.2 蜂蜜之組成 4
2.1.3 蜂蜜之生理活性 4
2.2 梅納反應 9
2.2.1 梅納反應特性 12
2.2.2 梅納反應之形成途徑 12
2.2.3 影響梅納反應之因子 12
2.2.4 梅納反應中間產物 18
2.2.5 梅納反應中間產物的抗氧化活性 18
第3章 材料與方法 21
3.1 試驗材料 21
3.2 化學試藥 21
3.3 試驗儀器 21
3.4 試驗設計 22
3.5 不同加工條件下各品質間之相關性 23
3.5.1 模擬系統的配製 23
3.5.2 貯存試驗 23
3.5.3 各品質間之相關性 23
3.6 試驗分析項目 23
3.6.1 抗氧化能力分析 23
3.6.2 色澤品質分析 26
3.6.3 pH值測定 27
3.6.4 色澤與抗氧化相關化合物 27
3.7 統計分析 30
第4章 結果與討論 31
4.1 不同pH值模擬系統對蜂蜜色澤品質之影響 31
4.2 加工條件對蜂蜜色澤品質之影響 31
4.2.1 加工溫度對其色澤品質之影響 33
4.2.2 pH值對其色澤品質之影響 37
4.3 梅納褐變產物特性之探討 40
4.3.1 UV可吸收性物質 40
4.3.2 褐變指數 44
4.3.3 UV可吸收物質與褐色聚合物之吸光值比值 47
4.4 pH值的變化 49
4.6 褐變反應產物抗氧化能力分析 55
4.6.1 DPPH自由基清除能力 55
4.6.2 FRAP還原能力 58
4.7色澤與抗氧化相關性成分分析 60
4.7.1 醣類 60
4.7.2 酚酸 60
4.7.3 梅納褐變產物 63
4.8 褐變產物對蜂蜜抗氧化之相關性分析 70
4.9 包裝形式與貯藏溫度對其各品質間之影響 74
4.9.1 色澤品質 74
4.9.2 梅納褐變產物特性之探討 78
4.9.3 pH值 80
4.9.4 蜂蜜色澤品質之相關性分析 80
4.9.5 褐變反應產物抗氧化能力分析 84
4.10 色澤與抗氧化相關性成分分析 87
4.10.1 醣類 87
4.10.2 總酚 87
4.10.3 羥甲基糠醛 87
4.11 抗氧化相關性分析 87
結論 93
參考文獻 94
作者簡介 102
中國農業科學院蜜蜂研究所。2000。養蜂手冊。五洲出版社。台灣。

行政院經濟部中央標準局。1998。總號1305。類號N5024。中國國家標準。

李錦楓。2001。蜂產品的保健功能 (一) 蜂蜜。健康世界。192: 79-80。台灣。

沉賜川。2003。以葡萄糖-甘胺酸模式探討乙醇溶液之梅納反應。國立台灣大學食品科學系博士學位論文。

張世揚。1988。蜜蜂與蜂產品。淑馨出版社。台灣。

張世揚。1986。基礎養蜂學。淑馨出版社。台灣。

張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。2001。食品化學。華香園出版社。台灣。

高毓翎。2003。以焙烤方式製造龍眼香甜酒之研究。國立台灣大學食品科學系碩士學位論文。

曹碧鳳。2002。蜂蜜真偽之鑑定及其品質之評估。國立屏東科技大學食品科學系碩士論文。

黃督方。2004。番石榴果汁澄清化處理與貯藏穩定性之探討。國立屏東科技大學食品科學系碩士論文。

潘憶文。蜂蜜之中國國家標準。2008年3月5日取自國產龍眼蜂蜜評鑑之一般成份及藥物殘留檢測:
http://www.naif.org.tw/livestock/20070571.doc

戴世傑。2006。焦糖化產物的特性及其酚類交聯程度之探討。國立屏東科技大學食品科學系碩士論文。

蕭增宜。2007。添加物對火龍果果皮色色萃取液的顏色及抗氧化利之影響。國立屏東科技大學食品科學系碩士論文。

Alnaqdy A, AI-Jabri A, Mahrooqi ZA, Nzeako B, Nsanze H. 2005. Inhibition effect of honey on the adherence of Salmonella to intestinal epithelial cells in vitro. International Journal of Food Microbiology 103: 347-51.

Ajandouz EH, Tchiakpe LS, Dalle OF, Benajiba A, Puigserver A. 2001. Effects of pH on caramelization and maillard reaction kinetics in fructose-lysine model systems. Food Chemistry and Toxicology 66: 926-31.

Ames JM. 1998. Applications of the Maillard reaction in the food industry. Food Chemistry 62: 431-39.

Antony S, Rieck JR, Dawson PL. 2000. Effect of dry honey on oxidation in turkey breast meat. Poultry Science 79: 1846-50.

Ashoor SH and Zent JB. 1984. Maillard Browning of Common Amino Acids and Sugars. Journal of Food Science 49: 1206-7.

Baltrusaityte V, Rimantas P, Ceksteryte V. 2007. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chemistry 101: 502-14.

Basualdo C, Sgroy V, Finola MS, Marioli JM. 2007. Comparison of the antibacterial activity of honey from different provenance against bacteria usually isolated from skin wounds. Veterinary Microbiology 124: 375-81.

Benjakul S, Lertittikul W, Bauer F. 2005(a). Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system. Food Chemistry 93: 189-96.

Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M. 2005(b). Antioxidative activity of caramelisation products and their preventive effect on lipid oxidation in fish mince. Food Chemistry 90: 231-9.

Bertoncelj J, Dobersek U, Jamnik M, Golob T. 2007. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chemistry 105: 822-8.

Blasa M, Candiracci M, Accorsi A, Piacentini MP, Albertini MC, Piatti E. 2006. Raw Millefiori honey is packed full of antioxidants. Food Chemistry 97: 217-22.

Burdurlu HS, Karadeniz. 2003. Effect of storage on nonenzymatic browning of apple juice concentrates. Food Chemistry 80: 91-7.

Carabasa-Giribet and Ibarz-Ribas A. 2000. Kinetics of colour development in aqueous glucose systems at high temperatures. Journal of Food Engineering 44: 181-9.

Dattatreya A and Rankin SA. 2006. Moderately acidic pH potentiates browning of sweet whey powder. International Dairy Journal 16: 822-8.

Fallico B, Zappala M, Arena E, Verzera. 2004. Effects of conditioning on HMF content in unifloral honeys. Food Chemistry 85: 305-13.

Gomez-Caravaca AM, Gomez-Romero M, Arraez-Roman D, Segura-Carretero A, Fernandez-Gutierrez A. 2006. Advances in the analysis of phenolic compounds in products derived from bees. Journal of Pharmaceutical and Biomedical Analysis 41: 1220-34.

Herbach KM, Rohe M, Stintzing FC, Carle R. 2006. Structural and chromatic stability of purple pitaya (Hylocereus polyrhizus [Weber] Britton & Rose) betacyanins as affected by the juice matrix and selected additives. Food research international 39: 667-77.

Hermosin I, Chicon RM, Cabezudo MD. 2003. Free amino acid composition and botanical origin of honey. Food Chemistry 83: 263-8.

Huang JR, Huang CY, Huang YW, Chen RH. 2007. Shelf-life of fresh noodles as affected by chitosan and its maillard reaction products. LWT-Food Science and Technology 40: 1287-91.

Janzowski C, Glaab V, SamimiE, Schlatter J, Eisenbrand G. 2000. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food and Chemical Toxicology 38: 801-9.

Jayabalan R, Subathradevi P, Marimuthu S, Swaminathan K. 2008. Changes in free-radical scavenging ability of kombucha tea during fermentation. Food Chemistry 109: 227-34.

Jayathilakan K, Sharma GK, Padhakrishna K, Bawa AS. 2007. Antioxidant potential of synthetic and natural antioxidants and its effect on warmed-over-flavour in different species of meat. Food Chemistry 105: 908-16.

Jin ZQ, Chen X. 1998. A simple reprodciple model of free radical-injured isolated heart induced by 1,1-Diphenyl-2-Picryl-Hydrazyl(DPPH). Journal of Pharmacological Methods 39: 67-70.

Johnston JE, Sepe HA, Miano CL, Brannan RG, Alderton AL. 2005. Honey inhibits lipid oxidation in ready-to-eat ground beef patties. Meat Science 70: 627-31.

Lecomte J, Finiels A, Moreau C. 1999. A new selective route to 5-hydroxymethylfurfural from furfural and furfural derivatives over microporous solid acidic catalysts. Industrial Crops and Products 19: 235-41.

Lertittikul W, Benjakul S, Tanaka M. 2007. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein–glucose model system as influenced by pH. Food Chemistry 100: 669-77.

Lopez-Galilea I, Andueza S, Leonardo ID, Paz de Pana M, Cid C. 2006. Influence of torrefacto roast on antioxidant and pro-oxidant activity of coffee. Food Chemistry 94: 75-80.

Martins SIFS, Jongen WMF, Van Boekel MAJS. 2001. A review of maillard reaction in food and implications to kinetic modeling. Trends in Food Science & Technology 11: 364-73.

Mckibben J and Engeseth NJ. 2002. Honey as a protective agent against lipid oxidation in ground turkey. Journal of Agricultural and Food Chemistry 50: 592-5.

Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG. 2005. Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chemistry 91: 571-7.

Morales J and Jimenez-Perez S. 2001. Free radical scavenging capacity of Maillard reaction products as related to colour and fluorescence. Food Chemistry 72: 119-25.

Mundo MA, Padilla-Zakour OI, Worobo RW. 2004. Growth inhibition of foodborne pathogens and food spoilage organisms by select raw honeys. International Journal of Food Microbiology 97: 1-8.

Murakami M, Shigeeda A, Danjo K, Yamaguchi T, Takamura H, Matoba T. 2002. Radical-scavenging activity and brightly colored pigments in the early stage of the maillard reaction. Journal of Food Science 67: 93-6.

Naranjo GB, Malec LS, Vigo MS. 1998. Reducing sugars effect on available lysine loss of casein by moderate heat treatment. Food Chemistry 62: 309-13.

Nicoli MC, Anese M, Parpinel MT, Franceschi S, Lerici CR. 1997. Loss and/or formation of antioxidants during food processing and storage. Cancer Letters 114: 71-4.

Niemeyer HB and Metzler M. 2003. Differences in the antioxidant activity of plant and mammalian lignans. Journal of Food Engineering 56: 255-6.

Shin HS and Ustuinol Z. 2005. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Research International 38: 721-8.

Spano N, Casula L, Panzanelli A, Pilo MI, Piu PC, Scanu R, Tapparo A, Sanna G. 2006. An RP-HPLC determination of 5-hydroxymethylfurfural in honey The case of strawberry tree honey. Talanta 68: 1390-5.

Summa CA, de la Calle B, Brohee M, Stadler RH, Anklam E. 2007. Impact of the roasting degree of coffee on the in vitro radical scavenging capacity and content of acrylamide. LWT-Food Science and Technology 40: 1849-54.

Shin HS and Ustunol Z. 2005. Carbohydrate composition of honey from different floral sources and their influence on growth of selected intestinal bacteria: An in vitro comparison. Food Research International 38: 721-8.

Turhan I, Tetick N, Karhan M, Gurel F, Tavukcuoglu Reyhan H. 2008. Quality of honeys influenced by thermal treatment. LWT-Food Science and Technology 41: 1396-9.

Turkmen N, Sari F, Poyrazoglu ES, Velioglu S. 2006. Effects of prolonged heating on antioxidant activity and colour of honey. Food Chemistry 95: 653-7.

Vaikousi H, Koutsoumanis K, Biliaderis CG. 2008. Kinetic modelling of non-enzymatic browning of apple juice concentrates differing in water activity under isothermal and dynamic heating conditions. Food Chemistry 107: 785-96.

Wang XH, Gheldof N, Engeseth NJ. 2004. Effect of processing and storage on antioxidant capacity of honey. Food Chemistry and Toxicology 69: 96-101.

Yilmaz Y and Toledo R. 2005. Antioxidant activity of water-soluble Maillard reaction products. Food Chemistry 93: 273-8.

Zhao B and Hall III CA. 2008. Composition and antioxidant activity of raisin extracts obtained from various solvents. Food Chemistry 108: 511-8.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔