(3.235.108.188) 您好!臺灣時間:2021/03/03 20:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:余承軒
研究生(外文):Cheng-Hsuan Yu
論文名稱:475不銹鋼顯微結構分析
論文名稱(外文):The Studies of the Microstructures of the Costom 475 Stainless Steel
指導教授:趙志燁趙志燁引用關係
指導教授(外文):Chih-Yeh Chao
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:56
中文關鍵詞:顯微結構板狀α沃斯田鐵晶格常數
外文關鍵詞:Microstructureα phaseAusteniteSubzero treatment
相關次數:
  • 被引用被引用:4
  • 點閱點閱:212
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
合金經970℃和1050℃固溶1小時後,其顯微結構為板狀α及殘留沃斯田鐵,溫度越高殘留沃斯田鐵含量越多,此板狀α(或稱麻田散鐵,c/a≒1)結構為體心立方結構(B.C.C.),其晶格常數為a=0.289nm,而殘留沃斯田鐵結構為面心立方結構(F.C.C.),晶格常數a=0.360nm。於-80℃/8H深冷處理後,將固溶時之殘留沃斯田鐵完全轉變為板狀α結構,此時之晶格常數為a=0.289nm。
經時效(450℃、550℃及650℃)處理,在450℃時可發現α相及沃斯田鐵相之產生,其α相之晶格常數為a=0.289nm。而在550℃和650℃時可發現L12 (Ni3Al)結構之析出物於基地內整合析出,此時之結構為板狀α與沃斯田鐵,並且有L12(面心立方結構)之析出物,其晶格常數為a=0.375nm。並且可以觀察出時效溫度550℃提高至650℃時,其Ni3Al之析出物由微粒狀轉變為顆粒狀,沃斯田鐵含量大量增加。與其他學者比較,固溶溫度提高至980-1050℃後,其B2相(NiAl)之析出物並未被發現。
Being solution heat treatment(SHT) on 970℃/1H or 1050/1H, and quenching room-temperature the microstructure of the alloy is the α phase and retained austenite. The higher SHT temperature would posses the higher retained austenite. This plate-α(called matensite)belong to the body-centered cubic(B.C.C.) structure with the lattice parameter a=0.289nm. The retained austenite belongs the face-centered cubic(F.C.C.) structure with lattice parameter a=0.360nm. After -80℃/8H subzero heat treatment. The retained austenite would transform into plate-α.
During the 450℃ aging processes, the α-plate martensite would be decompose to α + austenite phase, increasing the aging temperature to 550-650℃.The L12-phase(Ni3Al) particles would be found within the matrix . The lattice parameter of the L12-phase is a=0.375nm. Compared with the other workers studies , increasing the SHT temperature to 980-1050℃, the precipitation of the B2-phase(NiAl) will be inhibited.
目錄
摘要 I
Abstract II
謝誌 III
目錄 IV
表目錄 VI
圖目錄 VII
第1章 前言 1
第2章 文獻探討 2
2.1 不銹鋼凝固過程及型態 2
2.2 鉻-鎳沃斯田鐵系中的碳化鉻 3
2.3 麻田散鐵的相變化 4
2.4 麻田散鐵的結晶學 5
2.5 優選織構 6
2.6 17-4PH 析出硬化型不銹鋼 6
2-7 PH 13-8 Mo 析出硬化型不銹鋼之材料性質 7
2-8 Custom 475析出硬化型不銹鋼 8
第3章 實驗方法 12
3.1 材料製備 12
3.2 熱處理條件分析 12
3.3 顯微組織觀察 12
3.3.1 光學顯微鏡觀察 12
3.3.2 掃描式電子顯微鏡觀察 13
3.3.3 X光繞射分析儀 13
3.3.4 穿透式電子顯微鏡觀察 13
3.4 拉伸與硬度實驗 13
3.5 銲接外力及冷卻外力對皺褶之影響 14
第4章 結果與討論 19
4.1固溶處理 19
4.3時效處理 20
4.3.1 450℃時效後顯微結構與性質分析 20
4.3.2 550℃時效後顯微結構與性質分析 20
4.3.3 650℃時效後顯微結構與性質分析 21
4.4討論 21
4.5皺褶分析 23
第5章 結論 52
參考文獻 53
作者簡介 56
[1] 童山,1982,「17-4PH析出硬化型不銹鋼的機械性質與顯微組織」,碩士論文,國立台灣大學,台北。
[2] Seetharaman, V., Sundararaman, M., and Krishnan R., 1981, ”Precipitation Hardening in a PH 13-8 Mo STAINLESS steel” Mater.Sci.Eng.47, pp1-11.
[3] Garrison, W. M., and Brooks, J. A., 1991, ”The thermal and mechanical stability of austenite in the low carbon martensitic steel PH 13-8” Mater. Sci. Eng., A 149, pp65-72.
[4] Bajguirani H. H. R., 2002, “The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel” Mater. Sci. and Eng.A338, pp142-159.
[5] 徐文光,2007,「鐵-11鉻-8.5鈷-8鎳-5鉬-1.25鋁合金相變化與性質分析」,碩士論文,國立屏東科技大學,屏東。
[6] Allan, G. K., 1995, “Solidification of Austenitic Stainless Steels”, Ironmaking and Steelmaking, Vol. 22, No. 6, pp465-477.
[7] Suutala, N., Takalo, T., and Moisio, T., 1980, “Ferritic-Austenitic Solidification Mode in Austenitic Stainless Steel Welds,” Metallurgical Transactions A, Vol. 11A, No. 5, pp717-725.
[8] Hammer, O., Svensson, U., 1980, “Solidification Technology in the Foundry and Casthouse,” The Metals Society, pp401-410.
[9] Schino, A. D., M. Mecozzi, G., Barteri, M., and Kenny, J. M., 2000, “Solidification Mode and Residual Ferrite in Low-Ni Austenitic Stainless Steels,” Journal of Materials Science(35), pp375-380.
[10] Suutala, N., 1984, “Effect of Solidification Conditions on the Solidification Mode in Austenitic Stainless Steels,” Metallurgical Transactions A, Vol. 14A, pp191-197.
[11] Rajasekhar, K., Harendranath, C. S., Raman, R., and Kulkarni, S. D., 1997, “Microstructural Evolution during Solidification of Austenitic Stainless Steel Weld Metals: A Color Metallographic and Electron Microprobe Analysis Study,” Materials Characterization, Vol. 38, No. 2, pp53-65.
[12] Bilmes, P., Gonzalez, A., Llorente, C., and Solari, M., 1996, “Effect of δ ferrite Solidification Morphology of Austenitic Stainless Steel Weld Metal on Properties of Welded Joints,” Welding International 10 (10), pp797-808.
[13] Elmer, J. W., Allen, S. M., and Eagar, T. W., 1989, “Microstructure Development during Solidification of Stainless Steel Alloys,” Metallurgical Transactions A, Vol.20A, pp2117-2131.
[14] 蔡明欽譯,2004,鋼顯微組織與性質,五南圖書,第281-284頁。
[15] Bhadeshia, H. K. D. H., 1987 “Worked Examples in the Geometry of Crystals”, The Institute of Metals, pp56.
[16] Barrett, C. S., Trautz, O. R., 1948, Trans. AIME, Vol. 175, pp.579.
[17] Verein Deutscher Eisenhuttenleute, Steel, Vol.1(1992), pp121.
[18] Honeycombe, R. W. K., and Bhadeshia, H. K. D. H., 1995, “Steels Microstructure and Properties”, 2nd edn.
[19] 許樹恩,吳泰伯等著,1993,x光繞射原理與材料結構分析,中國材料科學學會,p429-430。
[20] Goller, G. N., and Clarke, W. C., Jr., 1950, The Iron Age. pp86.
[21] Armco Steel Corporation. Product Location, Data.
[22] Mott, N. F., 1953, The Iron Age. 18 , pp149.
[23] Linnert, G. E., 1959, Welding Engineer, pp38.
[24] Rack, H. J., and Kalish, D., 1974, Metallurgical Transaction.5, pp1595.
[25] Bosworth, T. J., and Zvanut, A. J., 1977, Welding Research Supplement. pp159.
[26] Antony, K. C., 1963, Journal of Metals. pp922.
[27] Klopp, W. D., 1988, “Ferrous Alloys PH 13-8 Mo”, Code 1510, pp1-33.
[28] Seetharaman, V., 1981, “Precipitation Hardening in a PH 13-8 Mo Stainless Steel”, Materials Science and Engineering, 47, pp1-11.
[29] Ping, D. H., Ohnuma, M., Hirakawa, Y., Kadoya, Y., Hono, K., 2005, “Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al Martensite Precipitation-Hardened Stainless Steel”, Materials Science and Engineering A, 394, pp285-295.
[30] Hochanadel, P. W., Robino, C. V., Edwards, G. R., Cieslak, M. J., 1994, “Heat Treatment of Investment Cast PH 13-8 Mo Stainless Steel: Part1. Mechanical Properties and Microstructure”, Metallurgical And Materials Transactions A, 25A, pp789-798.
[31] Munn, P., Andersson, B., 1990, “Hydrogen Embrittlement of PH 13-8Mo Steel in Simulated Real-Life Test and Slow Strain Rate Tests”, Corrosion, 46, 4, pp286-295.
[32] Pollard, B., 1990, “Selection of Wrought Precipitation-Hardening Stainless Steels”, In: ASM handbook, 6. ASM International, pp482-494.
[33] Albright, C.E., 1981, “Pulsed CO2 Laser Welding” Proceeding of the ASM, Trends in Welding Research, New Orleans, Louisiana, pp653-665.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔