(3.239.33.139) 您好!臺灣時間:2021/02/27 00:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊宗恩
研究生(外文):Tsung-En Chuang
論文名稱:不同土壤pH改良劑應用於砷污染酸性土壤中對豆科植物生長影響
論文名稱(外文):Evaluation of Legume Growth in the Arsenic Polluted Acid Soil Using Various pH Soils Amendments
指導教授:余伍洲余伍洲引用關係
指導教授(外文):Wu-Chou Yu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:土壤 pH 改良劑大豆花生
外文關鍵詞:pH Soils AmendmentsArsenicSoybeanPeanut
相關次數:
  • 被引用被引用:1
  • 點閱點閱:308
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
台灣地區土壤的重金屬及毒性有機物污染陸續被發現,截至民國九十七年六月,全省污染控制場址總數為 650 ,整治場址總數為 20 (行政院環保署,2008),國內過去成功完成土壤污染整治案例,目前所採用之整治技術包括化學酸萃取、土壤淋洗、安定法、排土客土、翻轉稀釋及電動復育法。植生復育法 (phytoremediation)為利用植物吸收土壤中之污染物後,經由植物之採收與移除等機制去除污染物,本研究經由人工孵育砷污染酸性土壤中施用水淬爐石、轉爐石及石灰等 pH 改良劑,於砷含量偏高之土壤進行豆科能源作物盆栽試驗,藉以了解不同土壤改良劑對於豆科植物之產能影響。

研究結果顯示,土壤中添加砷之植物之生長明顯受到土壤中較高濃度砷而比未添加砷矮小,表示供試植物之生長會受到土壤中砷的影響,當土壤中砷含量越高時,會導致大豆及花生豆莢產能減少,且植體高度會隨著土壤含砷濃度增加而減少。土壤陽離子交換能力之大小與 pH 值之高低呈正相關(P<0.2,n=8),且 CEC 值易受 pH 值所影響, pH 低時可變電荷之陰電性減低致使 CEC 變小, pH 高時則因去質子作用而增加陰電性促使 CEC 變大,於栽種大豆及花生土壤中之 pH 值均有此現象,而在大豆植體內含砷分佈情況,主要為根部含砷量最高,次之為莖葉及果莢部份,果實部分則為含砷量較低,花生植體含砷分佈情況,為根部含砷量最高,次之為果莢,而莖葉含量則較果莢低,果實含砷量則為最低,大豆之含水率與植生量為正顯著相關(P<0.01,n=8),而花生之含水率與植生量則無顯著性,大豆及花生植生量會隨著土壤中含砷量增加而減少。
Many heavy metals and organic pollutants have been found in soil in Taiwan, recently. At present, some remediation technologies for soil in Taiwan are applied including chemical acid extraction, soil flushing, stabilization, carriage dressing, attenuation, and electrokinetics separation, etc...This study is to research the polluted heavy metal with different soil enchancers including slag, BOF slag, and lime to proceed to the potted test contained arsenic in remediation soil.

The result shows that the growth of plant is shorter with the addition of higher concentration arsenic than that of lower concentration in soil. This indicates arsenic in soil can impact the growth of plants. The more the arsenic concentration is added, the less the amount of soy bean and legume is produced. In addition, the more arsenic concentration is added in soil, the less height of plants will be.The positive correlation is significant between cation exchange capacity of soil and pH value. When the pH value is lower, electronegative of variable charges induces and brings CEC reduction in soil, and vice versa. The appearance occurs in soy bean and peanut. In soy bean, the root has the highest arsenic concentration, followed by stalk, leaf, legume, and fruit. As for the peanut, the root has the highest arsenic concentration, followed by legume, stalk, leaf, and fruit. Between moisture content and vegetation rate is positive correlation in soy bean, while peanut is not. As the arsenic concentration increases in soil, the vegetation rate of soy bean and peanut is reduced.
摘要..............I
Abstract.........III
謝誌..............V
表目錄............VIII
圖目錄............IX
第1章 前 言......1
1.1 研究緣起.......1
1.2研究目的........2
第2章 文獻回顧.....3
2.1 砷污染之概述....4
2.1.1 砷之物化特性..4
2.1.2 砷之毒理......7
2.1.3 砷於環境中之流佈....8
2.1.4 台灣土壤中重金屬汙染調查.....9
2.2土壤中重金屬汙染之植物復育......16
2.2.1 植生復育法.....16
2.2.2 砷於植物體中機制......17
2.2.3 植物對重金屬吸收因素.....23
2.2.4 土壤中重金屬於植物體之影響.......24
2.2.5 重金屬型態與植物有效性.....25
2.2.6 土壤與植物營養之關連.......26
2.2.7 試驗植種介紹........28
2.3 爐石概述.........29
2.3.1 水淬爐石基本性質........30
2.3.2 轉爐石基本性質.......30
2.3.3 石灰概述......31
第3章 材料與方法......32
3.1 供試驗土壤基本性質......32
3.1.1 土壤酸鹼值.......32
3.1.2 土壤質地分析.......32
3.1.3 有機碳含量.......33
3.1.4 陽離子交換容量.....34
3.1.5 土壤中砷之測定.......34
3.1.6 人工孵育砷污染土之配製......35
3.2 植體前處理及測定.......37
3.2.1 盆栽試驗........37
3.2.2 植體樣品前處理......37
3.2.3 植體之生植量與水分含量.......37
3.2.4 植體中砷之測定方法.......37
3.3 品保品管(QA/QC)......38
第4章 結果與討論.......39
4.1 試樣土壤基本理化性質......39
4.2 盆栽試驗.......40
4.2.1 植體生長情形......40
4.2.2 植生量與含水率.......47
4.2.3 土壤有機物、 pH 及陽離子交換能力......50
4.3 土壤及植體之含砷量.....56
4.3.1 植體中砷濃度分佈.....56
4.3.2 大豆植體地上部與地下部分佈情形........63
4.3.3 花生植體地上部與地下部分佈情形........65
4.3.4 大豆及花生植體對土壤之相關性..........68
第5章 結論與建議......72
5.1 結論.....72
5.2 建議.....73
參考文獻......74
作者簡介......85
蘇宗振,2007,「我國生質能源作物政策暨推動現況」,生質燃料推動研討會,屏東。

農糧署作物生產組雜糧特作科,上網日期:96/12/5 ,取自http://www.afa.gov.tw/public_index.asp?CatID=112 。

行政院環保署,2008,「土壤及地下水污染整治網」,上網日期: 97/06/02 ,取自http://sgw.epa.gov.tw/public/site_chart.asp 。

行政院環保署環境檢驗所,2005,「土壤中酸鹼值測定方法」,NIEA S410.61C,桃園。

行政院環保署環境檢驗所,2002,「土壤中砷檢測方法-砷化氫原子吸收光譜法」,NIEA S310.62C,桃園。

楊景輝,1995,「土壤污染與防治[M]」,北京: 科學出版社。

郭魁士,1997,「土壤學」,中國書局印行修訂八版,第247-310頁。

中華土壤肥料學會,2001,「肥料要覽」,第56-57頁。

李芳胤、陳士賢,2007,「土壤分析實驗手冊」,新文京開發出版股份有限公司,第353-354頁。

阮國棟,1986,「砷之污染特性及處理技術」,工業衛生雜誌,第15卷,第2期,第156-165頁。

楊貫一,1992,「爐石資源化—中鋼公司爐石應用的過去與未來」,技術與訓練,第17卷,第1期,第31-46頁。



連大進、吳振碩,1993,「大豆新品種台南2號」,台南區農業專訊,第5期,第3-5頁。

王春旭,李生志,1993,「環境中砷的存在型態研究」,環境科學,第14卷,第4期,第53-57頁,大陸。

李豐,呂鋒洲,1996,「螢光腐植酸與砷所引起動物組織的病理變化」,台灣醫學期刊,第1期,第689-696頁。

楊萬發,1996,「鋼鐵業廢棄物資源化案例彙編」,經濟部工業局。

夏星輝,陳靜生,1997,「土壤重金屬污染治理方法研究進展」,環境科學,第18卷,第3期,第72-76頁,大陸。

楊允聰、林義恭,1998,「落花生新品種台南14號之育成」,行政院農業委員會台南區農業改良場研究彙報第35號。

沈振國,劉友良,1998,「超累積重金屬植物研究發展」,植物生理學通訊,第34卷,第2期,第133-139頁,大陸。

王劍虹、麻密,2000,「植物修復的生物學機制」,植物學通報,第17卷,第6期,第504-510頁,大陸。

劉國忠,2001,「煉鋼爐渣之資源化技術與未來推展方向」,環保月刊,第4期,第117-118 頁。

陳同斌,2002,「砷超富集植物蜈蚣草及其對砷的富集特徵」,科學通報,第47卷,第3期,第207-210頁,大陸。

楊肖娥,2002,「重金屬污染土壤修復技術研究的現狀與展望」,應用生態學報,第13卷,第6期,第757-762頁,大陸。

何玉科、史宇,2003,「重金屬汙染環境的植物修復及其分子機制」,植物生理與分子生物學學報,第29卷,第4期,第267-274頁,大陸。

林政綱,2003,「攝入地下水砷所引發致癌風險之研究」,萬能學報,第25期,第285-303頁。

肖鵬飛,2004,「土壤重金屬污染及其植物修復研究」,遼寧大學學報,第31卷,第3期,大陸。

林秋奇、顧繼光,2005,「土壤-植物系統中重金屬污染的治理途徑及其研究展望[J]」,土壤通報,第36卷,第1期,第128-133頁,大陸。

張開明、黃蘇珍、原海燕,2005,「銅污染的植物毒害抗性機理及其植物修復[J]」,江蘇環境科技,第18卷,第1期,第4-6頁,大陸。

顧繼光、林秋奇、胡韌,2005,「土壤-植物系統中重金屬污染的治理途徑及其研究展望」,土壤通報,第36卷,第1期,第128-133頁,大陸。

王松良,2007,「土壤重金屬污染的植物修復與金屬超富集植物及其遺傳工程研究」,中國生態農業學報,第15卷,第1期,第191頁,大陸。

王新,賈永鋒,2007,「土壤砷污染及修復技術」,環境科學與技術,第30卷,第27期,第107-110頁,大陸。

白建鋒,2007,「砷污染土壤的生物修復研究發展」,土壤(soilis),第39卷,第5期,第692-700頁,大陸。

朱永官、王利紅、陳玉、孟祥燕、董研,2007,「植物超富集砷機制研究的最新發展」,環境科學學報,第27卷,第5期,大陸。


潘志明,2007,「砷污染土壤修復研究發展」,土壤(soilis),第39卷,第3期,第341-346頁,大陸。

林浩潭,1991,「以作物中重金屬容許含量推算土壤中重金屬容許含量之探討」,碩士論文,國立中興大學,土壤環境科學研究所,台中。

黃弘斌,1997,「臺灣數種農耕土壤之總量砷與固相砷型態及對砷之吸附」,碩士論文,國立中興大學,土壤環境科學研究所,台中。

黃詠愷,2002,「烏腳病盛行地區養殖魚貝類砷物種分析研究」,碩士論文,國立臺北醫學大學,公共衛生研究所,台北。

李春樹,2003,「銅鋅鉛在污染土壤中之化學型態及其萃取性研究」,博士論文,國立成功大學,環境工程學系,台南。

謝瀚湋,2003,「以煤灰及水淬爐石粉製備吸附與吸收劑」,碩士論文,國立屏東科技大學,環境工程與科學,屏東。

陳英成,2004,「利用蝦殼移除水中砷污染質之研究」,碩士論文,南華大學,環境管理研究所,嘉義。

柯鴻慶,2004,「以植物萃取法處理銅鉛鎘污染之土壤」,碩士論文,嘉南藥理科技大學,環境工程與科學系,台南。

賴盈瑋,2004,「草地生態系統復育過程之生物資源研究」,碩士論文,國立雲林科技大學,環境與安全衛生工程系,雲林。

江幸姿,2005,「滲透性反應牆對於砷污染土壤進行電動力法復育影響之研究」,碩士論文,國立中山大學,環境工程研究所,高雄。



吳明修,2005,「評估以煤灰及水淬爐石粉製備之吸附劑應用於污染物之去除」,碩士論文,國立屏東科技大學,環境工程與科學系,屏東。

李德河,2005,「轉爐石作為基底層材料及其工程特性之研究」,博士論文,國立成功大學,土木工程研究所,台南。

郭書吟,2006,「以雜草吸收受污染土壤中重金屬之探討」,碩士論文,朝陽科技大學,生物技術研究所,台中。

李孟憲,2007,「酸雨強度與容量對污染廠址重金屬淋洗潛勢之影響」,碩士論文,國立屏東科技大學,環境工程與科學研究所,屏東。

Asher, C.J., Reay, P.F., 1979, “Arsenic uptake by barley seedlings,” Aust J. Plant Physiol. 6, 459-466.

Adams, F., 1984, “Crop response to lime in the southern United state,” In F.Adams(ed.) Soil acidity and liming. 2nd ed. Agronomy 12:211-265.

Alloway,B.J.1990,“HeavyMetalinSoils.Blackie,”Glasson,UK.pp.100-121; 177-194.

Adriano, D.C., 2001, “Trace Elements in the Terrestrial Environment,” Springer, New York.

Alam M.M., Tokunaga S, Mackawa T.,2001, ” Extraction of arsenic in a synthethetic arsenic-contaminated soil using phosphate.” Chemos-phere, 43:1035-1041.

Baker, A.J.M., McGrath, S.P., Sidoli, C.M.D., and Reeves, R.D.,1994, “The possibility of in situ heavy metal decontamination of polluted soil using crops of metal-accumulating plants,” Resources, Conservation andRecycling, Vol. 11, pp. 41-49.

Brooks, R.R., 1998, “Plants that hyperaccumulate heavy metals,” CAB International, New York, pp. 380.

Brooks, R.R., 1997, “copper and cobalt uptake by haumaniastrum species.Plant Soil,” Vol. 48, pp. 541-544.

Baker, A.J.M.,Walker P.L., 1990, “Terrestrial higher plants which hyperaccumulate metallic element-A review of their distribution,” ecology, phytochemistry.Biorecovery, 1:81-126.

Banuelos, G.S., and Ajwa, H.A., 1999,“Trace elements in soils and plants: an overview,” J. environ. Sci. Health-Part A, Vol. 34, No. 4, pp. 951-974.

Comis, D., 1996, “Green remediation: Using plants to clean the soil,” Journal of Soil and Water Conservation, May-June, pp. 184-186.

Cullen WR, Reimer KJ., 1989, “Arsenic spcciation in the environment,” Chem. Rcv. 89:713.

Cunningham SD., 1993, “Remediation of contaminated soil with green plants:an overview[J],” in vitro cell dev boil, 29:207-212.

Dinkelaker, B., Hengeler, C., Marschner, H., 1995, “Distribution and function of proteoid roots and other root clusters,” Bot. Acta 108, 183-200.

Flathman PE, Lanza GR, Glass DJ. 1999,” Phytoremediation issue,” Soil Groundwater Cleanup,2:4-11.

Farina, M. P. W., M. E. Summer, C. O. Plank, and W. S. Letzsch. 1980, “Exchangeable aluminum and pH as indicators of lime requirement of corn,” Soil Sci. Soc. Am. J. 44:1036-1040.

Fitz, W.J., Wenzel, W.W., 2002, “Arsenic transformations in the soilrhizosphere-plant system: fundamentals and potential application tophytoremediation,” Journal of Biotechnology 99, 259-278.
Gonc Z L, LU X F. 2002, ”Arsenic speciation analysis,” Talanta, 58:77-96.

Gee, G. P., and J. W. Bauder., 1986, “Particle-size analysis,” In A. Klut(eds.) Methods of soil Analysis, Part 1. 2nd ed. Agron. Monogr. 9. ASA and ASSS, Madison, WI, USA, P. 383-441.

Hughes, M.F., 2002, “Arsenic toxicity and potential mechanisms of action,” Toxicol. Letters. 133:1-16.

Harvey, B.,1995, “Absorbing possibilities: Phytoremediation,” Environmental HealthPerspectives, Vol. 103, pp. 1106-1108.

Harvey, C.F., Swartz CH, Badruzzaman ABM, Keon-Blute N, Yu W, Ali MA, Jay J, Beckie R, Niedan V, Brabander D, Oates PM, Ashfaque KN Islam S, Hemond HF, Ahmed MF., 2002, “Arsenic mobility and groundwater extraction in Bangladesh,” Science,” 298:1602-1606.

Hughes, M.F., 2002, “Arsenic toxicity and potential mechanisms of action,” Toxicol. Letters. 133:1-16.

Hoffland, E., 1992, “Quantitative evaluation of the role of organic acid exudation in the mobilisation of rock phosphate by rape,” Plant Soil 140, 279-289.

Hanys, R. J., 1983, “Soil acidification induced by leguminous crops,” Grass and Forage Sci. 68: 289-308.

I Alkorta, J Hernandez-Allica, J M Becerril, et al., 2004, “Re-cent findings on the phytoremediation of soils contami-mated with environmentally toxic heavy metals and metalloids such as zinc,” cadmium, lead, and arsenic[J]. Environmental Science and Bio/Technology, 3:15-90.

IARC., 1987, “Evalution of carcinogenic risks to humans”. Internation Agency for Research on Cancer, Lyon. Vol.79.

Kirk, G.J.D., Santos, E.E., Findenegg, G.R., 1999, “Phosphate solubilisation by organic anion excretion from rice (Oryza sativa L.) growing in aerobic soil,” Plant Soil 211, pp.11-/18.

Kramer U, Chardonnens A N.2001, “The use of transgenic plants in the bioremediation of soils contaminated with trace elements [J],” Applied Microbiology and Biotechnology, 55(6):661-672.

Lathwell, D. J., and W. S. Reid. 1984, “Crop response to lime in the Northwastern United state,” In F. Adams(ed). Soil acidity and liming. 2nd ed. Agronomy, p.305-332.

Lena, Q. M., 2001, “A fern that hyperaccumulates arsenic[J],” Nature, 409:579.

Mench, M. J., V. L. Didier, M. Loffler, A. Gomez, and P. Masson., 1994, “A mimicked In-situ remediation study of metal-contaminated soils with emphasis on cadmium and lead,” Journal of Environment Quality. 23:58-63.

Myrna, E.W., 1997, “Phytoremediation on the Brink of commercialization,” Environ.Sci & Technol., Vol. 31, No. 4, pp. 182-186 .

Macur, R.E., Wheeler, J.T., McDermott, T.R., Inskeep, W.P., 2001, “Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings,” Environmental Science and Technology 35, 3676–3682.

McLean, E. O., 1973, “Testing soil for pH and lime requirement,” In L. M. Walsh and J. D. Beaton (ed.) Soil testing and plant analysis.Am. Soc. Of Agron., Madison, WI, p.77-95.

Marschner, H., Ro¨mheld, V., 1994, “Strategies of plants for acquisition of iron,” Plant Soil 165, 261-274.

Meharg, A.A., Macnair, M.R., 1990, “An altered phosphate uptake system in arsenate-tolerant Holcus lanatus L,” New Phytol. 116, pp. 29-35.

Meagher, R.B., 2000,“Phytoremediation of toxic elemental and organic pollutants,” Current Opinion in Plant Biotechnology, Vol. 3, pp. 153-162 .

Meharg, A.A., Rahman, M., 2003, “Arsenic contamination of Bangladesh paddy field soils,” implications for rice contribution to arsenic consumption. Environ. Sci. Technol., 37:229-234.

Ma L Q , Komar K M , Tu C., 2001, “A fern that hyperaccumulates arsenic:a hardy versatile,fast-growing plant helps to remove arsenic form contaminated soil[J],” Nature.409:579-579.

Meagher, R.B., 2000, “Phytoremediation of toxic elemental and organic pollutants,” Curr opin plant boil, 3:153-162.

Maitani, T., 1996, “The composition of metals bound Class to Class Ⅲ metallothionein(phytochelation and itsdesglycyl peptic)induced by Various metals in root cultures of Rubia undorun.plant physiol,” 110:1145-50.

Meagher, R.B., and Heaton, A.C.,2005, “Strategies for the engi-neered phytoremediation of toxic element pollution: mercury and arsenic[J],” Industrial Microbiology and Biotechnology, 329(11-12):502-513.


Nriagu JO., 1994, “Arsenic in the environment : Human health and ecosystem effects Advances in environment science and Technology,” New York: John Wiley and Sons,:3-15,27.

Neumann, G., Ro¨mheld, V., 1999, “Root excretion of carboxylic acids and protons in phosphorous-deficient plants,” Plant Soil 211, 121-130.
Nelson, D.W., and L.e. Sommers., 1982, “Total carbon, OC, and organic matter. In A. L. Page et al.(eds.)Methods of soil Analysis, Part 2. 2nd ed. Agron. Monogr. 9. ASA and ASSS, Madison, WI, USA,pp. 539-577.

Oremland RS, 2003, “Stolz JF The ecology of arsenic,” Science, 300:939-944.

Palmgren MG. 2001, “Plant plasma membrane H+ -ATPases: powerhouses for nutrient uptake,” Annu Rev Plant Physiol plant mol boil, 3:153-162.

Reichman, 2007,” The potential use of the legume–rhizobium symbiosis for the remediation of arsenic contaminated sites” ,Soil Biology & Biochemistry 39:2587-2593.

Romkens P, Bouwman L, Japenga J, Draaisma C., 2002, “Potentials and drawbacks of chelate-enhanced phytoremedi-ation of soils,” Environ pollut, 116:109-121.

Schnoor J.L., 2003, “Emerging chemical contaminants.” Environmental Science and Technology,37(21):375-388.

Sidle, R.C., J.E. Hook., and L.T. Kardos., 1977, “Accumulation of heavy metals in soils as influenced by extended wastewater irrigation,” Water PollutionControl Federation Research Journal, 49:311-318.

Smith, E, Naidu R, Alston AM. Arsenic in the soil environment: A review. Advances in Agronomy, 1998,64:149-195.

Terry, M., and Lewis, G.M.,1997, “The advancement of phytoremediation as an innovative environmental technology for stabilization, or restoration of contaminated sites in Canada: A decision paper,” Journal of Soil Contamination, Vol. 6, No. 3, pp. 227-241.



Tu C , Ma L Q , Bondada B., 2002, “Arsenic accumulation in the hyperaccumulator Chinese brske fern and its utilization potential for phytoremediation”.

United States Environmental Protection Agency (USEPA)., 1997,” Cleaning Up the Nation’s Waste Sites : Markets and Technology Trends. Washington,” DC: office of solid waste and emergency response.

Walter W. Wenzel., Walter J. Fitz.,2002,” Arsenic transformations in the soil-/rhizosphere-/plant system:fundamentals and otential application to phytoremediation.” Journal of Biotechnology 99:259-278.

Wang JR , Zhao F J , Meharg A A , et al.2002, “Mechanisms of arsenic hyperaccumulation in Pteris vittata Uptake kinetiecs,interactions with phosphate, and arsenic speciation[J],” Plant Physiol, 130:1552-1561.

Yang, H.C., Cheng, J.J., Finan, T.M., Rosen, B.P., Bhattacharjee, H.,2005, “Novel pathway for arsenic detoxification in the legume symbiont Sinorhizobium meliloti,” Journal of Bacteriology 187:6991-6997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔