(3.215.183.251) 您好!臺灣時間:2021/04/23 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林旻進
研究生(外文):Min-Ching Lin
論文名稱:10-40Gb/s同軸式高速雷射模組構裝之研究
論文名稱(外文):The Study of 10-40 Gb/s High-Speed Laser Module Based on Coaxial-Type Packages
指導教授:施天從鄭木海
指導教授(外文):Tien-Tsorng ShihWood-Hi Cheng
學位類別:博士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:118
中文關鍵詞:10兆位元40兆位元同軸式雷射模組雙向光學次模組疏式分波多工被動光學網路光纖到家
外文關鍵詞:PONFTTHCWDM10-Gb/s40-Gb/scoaxial-type laser moduleBOSA module
相關次數:
  • 被引用被引用:4
  • 點閱點閱:362
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此論文之目標為提供一個低成本與高性能雷射模組封裝之解決方案,可用於高速光纖通訊、光纖到家(Fiber-To-The-Home)與被動光學網路之應用中。在本研究中實現了「10兆位元之同軸式雷射模組」,「10兆位元雙向光學次模組」及「具有四個10兆位元通道之疏式分波多工(CWDM)雷射模組」。
傳統TO-Can基底由於結構上沒有適當設計因此具有較差之RF傳輸特性。由於較長訊號接腳與打線長度產生凹陷之濾波效應成為主要克服之問題。研究中所提出之同軸式雷射模組採用商業化之TO-Can材料並具有一個內部匹配電阻來降低訊號反射的現象。比較小訊號之模擬與實驗結果得到不錯之一致性。本研究中實現了10兆位元同軸式雷式模組且可以達到OC-192規範之眼圖餘裕31%。
基於成本考量,研究中提出10兆位元雙向光次模組(BOSA)之結構採用商業化較低速155-Mb/s 或是1.25-Gb/s雙向光次模組之設計。提出之雙向光次模組在發射與接受端皆具有清晰的量測眼圖結果。在10公里單模光纖傳輸下具有0.5 dB之功率代價(power penalty),與0.9dB之串音代價(crosstalk penalty)。根據實驗結果,我們已經成功驗証此高性能與低成本之10兆位元雙向光次模組且證實此雙向傳輸架構用於未來高速光纖到家或是被動式光網路之可行性。
此具有4個10兆位元通道之雷射模組採用現行低成本TO-Can雷射與CWDM技術,並提供一個可應用於40-Gb/s光纖通訊網路之解決方案。此光學模組每個通道具有10兆位元之操作速率,在位元誤碼率(BER)為10-9情況下可以傳輸距離達到30公里。平均之系統光功率損耗約為12dB。本研究中所提出之高性能之40兆位元CWDM模組具有低成本之可能性,並可應用於WDM-PON之光纖到家系統中。
The goal of this dissertation is to provide a solution by using a low-cost and high-performance laser module package for the applications of high-speed optical communication, fiber-to-the-home (FTTH), and passive optical network (PON). A 10-Gb/s coaxial-type laser module, a 10-Gb/s bi-directional optical sub-assembly (BOSA) module, and a 4 channels x 10-Gb/s coarse wavelength division multiplexing (CWDM) laser module have been implemented for this study.
The conventional TO-Can header suffers poor RF transmission characteristics without proper modification. The notch filter effect induced by the parasitic inductance of the long lead and wires is one of its major factors. The proposed coaxial laser module is fitted with a commercial TO-Can with an internal matching resistor of 18Ω to reduce the signal reflection. The comparison of small signal results between the theoretical and the experimental results shows good agreement. The proposed 10-Gb/s coaxial laser module implemented can achieve 31% mask margins with the OC-192 standard.
For cost consideration, the structure of the proposed 10-Gb/s BOSA modules is adapted to the idea of the commercial low bit rate of 155-Mb/s or 1.25-Gb/s BOSA modules. The proposed BOSA modules show a clear opening eye diagrams at both their transmitter and receiver side. The power penalty with a 10-km SMF transmission is 0.5dB and the crosstalk penalty is 0.9dB. According to the experimental results, we have demonstrated successfully the high-performance and the low-cost of 10-Gb/s BOSA modules and verified the feasibility of the bi-directional architecture for use in the future’s high-speed FTTH or PON network applications.
The 4 channel x 10-Gb/s laser modules adapted the existing low-cost TO-Can laser and the CWDM techniques provide one of the solutions for the 40-Gb/s optical communication application. The proposed optical module operating at 10-Gb/s per channel can exceed a rate of over 30 km transmission at the bit-error-rate (BER) of 10-9, with an average system power penalty of 12 dB. The proposed high-performance 40-Gb/s CWDM module shows the low-cost possibility that ensures the application of WDM-passive optical network (WDM-PON) fiber-to-the-home (FTTH) systems.
Abstract
Acknowledgement
Contents…………………………………………………………….. I
List of Figures……………………………………………………… III
List of Tables……………………………………………………….. VII

Chapter 1 Introduction 1
1.1 Background……………………………………………...….. 1
1.2 Motivation (Evolution of Laser Module Package)………………….. 1
1.2.1 DIP or Mini-DIL Package……………………………………. 2
1.2.2 Butterfly Package…………………………………………….. 3
1.2.3 TO-Can Package……………………………………………... 3
1.2.4 Other Modified Laser Module Package for 10 Gb/s Applications…………………………………………………
5
1.3 Different Solutions of the Coaxial-type Laser Modules for High-Speed…………………………………………………………...
6
1.4 Overview of Dissertation……………………………………………. 9
1.5 References…………………………………………………………… 12

Chapter 2 10-Gb/s Coaxial Laser Module Design and Simulation 15
2.1 Equivalent Circuit Model of the High-speed Un-cooled DFB-LD….. 15
2.2 Simulation Results of the High-speed Un-cooled DFB-LD………… 19
2.3 Circuit Modeling of the High-speed Laser Module…………………. 21
2.4 Simulation Results of the Coaxial Laser Module…………………… 29
2.5 Analysis and Optimization of Present 10-Gb/s
Laser Module Package………………………………………………
33
2.6 References...…………………………………………………………. 41

Chapter 3 10-Gb/s Coaxial Laser Module Package and Results 43
3.1 Laser module package processes……………………………………. 43
3.1.1 Material prepared…………………………………………….. 43
3.1.2 Die-Bonder System…………………………………………... 45
3.1.3 Wire-Bonder System………………………………………… 49
3.1.4 Laser Welding System……………………………………….. 53
3.2 Fabrication of the Coaxial Laser Module…………………………… 56
3.4 Measurement Results of the Coaxial Laser Module………………… 58
3.5 References…………………………………………………………… 63

Chapter 4 10-Gb/s BOSA Module Package 64
4.1 Introduction of 10-Gb/s BOSA Module……………………………... 64
4.2 Fabrication of 10-Gb/s TO-56 Packaged Distributed Feedback (DFB) Laser Diode…………………………………………………..
65
4.3 Fabrication of 10-Gb/s TO-CAN Packaged PIN-TIA Device………. 67
4.4 Fabrication Processes of BOSA Module…………………………….. 68
4.5 Measurement and Results ………………………...………………… 70
4.5.1 Transmitter of the BOSA module……………………………… 70
4.5.2 Receiver of the BOSA module………………………………… 75
4.6 Summary…………………………………………………………….. 78
4.7 References…………………………………………………………… 80

Chapter 5 40Gb/s Laser Module based on 10-Gb/s Per Channel 82
5.1 Introduction………………………………………………………….. 82
5.2 Fabrication of the DFB laser with collimator output………………... 83
5.3 Structure and Fabrication of the proposed 40-Gb/s CWDM optical module……………………………………………………………….
85
5.4 Measurement Results and Discussion……………………………….. 87
5.4.1 Performance of the DFB lasers………………………………... 87
5.4.2 CW property of the proposed 40-Gb/s CWDM optical module. 89
5.4.3 Eye Diagrams and BER performance of the 40-Gb/s CWDM module…………………………………………………………
91
5.5 Summary…………………………………………………………….. 96
5.6 References..…………………………………………………………. 97

Chapter 6 Conclusions 98
6.1 Conclusion.………………………………………………………….. 98
6.2 Discussion………………………………………….………………... 99
6.2.1 40-Gb/s CWDM-PON network……...………………………... 99
6.2.2 10-Gb/s MMF Transmission…………………………………... 101

Vita 102
[1.1]J.M. Pedersen, T.P. Knudsen, O.B. Madsen, “Reliability demands in FTTH access networks,” in Proc. Advanced Communication Technology Conf., 2005, pp. 1202-1207.
[1.2]H. Shinohara, “Broadband access in Japan: rapidly growing FTTH market,” IEEE Communication Magazine, Vol.43, pp. 72-78, Sept. 2005.
[1.3]W.K. Park, Sung.I. Nam, C.S. Choi, Y.K. Jeong, and K.R. Park, “An implementation of FTTH based home gateway supporting various services,” in Proc. Consumer Electronics Conf., Jan. 2006, pp. 63-64.
[1.4]M. Nakamura, H. Ueda, S. Makino, T. Yokotani, and K. Oshima, “Proposal of networking by PON technologies for full and Ethernet services in FTTx,” J. Lightwave Technol., vol.22, no. 11, pp. 2631-2640, Nov. 2004.
[1.5]H. Hayashida, M. Yasunaga, T. Ema, and K. Nakazawa, “Reducing costs for first one mile FTTH lines” in Proc. of OFC 2005, vol.3, Mar. 2005.
[1.6]J.J. Yoo, J.D. Park, T.Y. Kim, H.H. Yun, and B.W. Kim, “WDM-PON platform development”, in Proc. of Advanced Communication Technology 2005, vol. 1, pp. 714-716, 2005.
[1.7]Y.H. Kim, Y.D. Bae, E.H. Lee, I. Kim, Y.C. Bang, J.K. Lee, Y. Oh, and D.H. Jang, “InGaAsP SSC LD for Low-cost Uncooled FTTH Module with Bandwidth over 4GHz,” in Proc. of Indium Phosphide and Related Materials, pp. 543-546, 2005.
[1.8]N. Gagnon, A. Girard, and M. Keblance, “Considerations and Recommendations for In-Service Out-of-Band Testing on Live FTTH Networks,”
[1.9]R. Luo, T.G. Ning, T.J. Li, L.B. Cai, F. Qiu, S.S. Jian, and J.J. Xu, “FTTH-A Promising Broadband Technology,” in Proc. of Communication, Circuits and Systems, vol. 1, p.p 609-612, May 2005.
[1.10]S. Kallukka and P. Raatikainen, “Link Utilization and Comparison of EPON and GPON Access Network Cost,” IEEE Globecom 2005, pp. 301-305, 2004.
[1.11]R.P. Davey, P. Healey, I. Hope, P. Watkinson, D.B. Payne, O. Marmur, J. Ruhmann, Y. Zuiderveld, “DWDM reach extension of a GPON to 135 km,” J. Lightwave Technol., vol. 24 , no. 1, pp. 29-31, 2006.
[1.12] E. Hugues-Salas, R. Razavi, T.J. Quinlan, M.P. Thakur, S.D. Walker, “A 2.5 Gb/s Edge-Detecting Burst-Mode Receiver for GPON Access Networks,” in Proc. Optical Fiber Communication Conf., p.p 1-3, March 2007.
[1.13]C.H. Yu, and D.U. Li, “A 2.5 Gb/s CMOS Burst-Mode Limiting Amplifier for GPON System,” in Proc. Circuits and Systems Conf., p.p 2538-2541, May 2007.
[1.14]X.Z Qiu, Y.C. Yi, P. Ossieur, S. Verschuere, D. Verhulst, B. De Mulder, W. Chen, J. Bauwelinck, T. De Ridder, B. Baekelandt, C. Melange, J. Vandewege, “High Performance Burst-Mode Upstream Transmission for Next Generation PONs,” in Proc. Optical Fiber Communication Conf., p.p 1-3, Oct. 2006.
[1.15]X.Z. Qiu, P. Ossieur, J. Bauwelinck, Y. Yi, D. Verhulst, J. Vandewege, B. De Vos, P. Solina, “High Performance Burst-Mode Upstream Transmission for Next Generation PONs,” J. Lightwave Technol., vol. 22 , no. 11, pp. 2498-2508, 2004.
[1.16]X.Z. Qiu, Y.C. Yi, P. Ossieur, S. Verschuere, D. Verhulst, B. De Mulder, W. Chen, J. Bauwelinck, T. De RIdder, B. Baekelandt, C. Melange, and J. Vandewege, “High Performance Burst-Mode Upstream Transmission for Next Generation PONs,” in Proc. Optical Fiber Communication and Optoelectronic Exposition Conf., p.p 1-3, Oct. 2006.
[1.17]N. Kashima, “Dynamic properties of FP-LD transmitters using side-mode injection locking for LANs and WDM-PONs,” J. Lightwave Technol., vol. 24 , no. 8, pp. 3045-3058, 2006.
[1.18]C. Schubert, R.H. Derksen, M. Moller, R. Ludwig,C.J. Weiske, J. Lutz, S. Ferber, A. Kirstadter, G. Lehmann, and C. Schmidt-Langhorst, “Integrated 100-Gb/s ETDM Receiver,” J. Lightwave Technol., vol. 25 , no. 1, pp. 122-130, Jan. 2007.
[1.19]J.P. Turkiewicz, E. Tangdiongga, G.D. Khoe, H. de Waardt, W. Schairer, H. Rohde, G. Lehmann, E.S.R. Sikora, Y. R. Zhou, A. Lord, and D. Payne, “Field trial of 160 Gb/s OTDM add/drop node in a link of 275 km deployed fiber,” in Proc. of OFC 2004, PDP1.
[1.20]S. Vorbeck, R. Leppla, W. Weiershausen, M. Schneiders, and E. Lach, “Long-haul field transmission experiment of 8 x 170 Gb/s over 421 km installed legacy SSMF fibre infrastructure,” presented at the ECOC 2005, We3.2.1.
[1.21]F. Koyama, “Recent Advances of VSCEL Photonics,” J. Lightwave Technol., vol. 24 , no. 12, pp. 4502 - 4513, Dec. 2006.
[1.22]E. Lach, and K. Schuh, “Recent Adcances in Ultrahigh Bit Rate ETDM Transmission Systems,” J. Lightwave Technol., vol. 24 , no. 12, pp. 4455 - 4467, Dec. 2006.
[1.23]K. Sakai, H. Aruga, S.I. Takagi, M. Kawano, M. Negishi, Y. Kondoh, and S.I. Kaneko, “1.3

[2.1] R.S. Tucker, and I.P. Kaminow, “High-Frequency Characteristics of Directly Modulated InGaAsP Ridge Waveguide and Buried Heterostructure Lasers,” IEEE J. Lightwave Technolo., vol. LT-2, NO. 4, pp. 385-393, Aug. 1984.
[2.2] K. Kishino, S. Aoki, and Y. Suematsu, “Wavelength variation of 1.6 μm wavelength
buried heterostructure GaInAsP/InP lasers due to direct modulation,” IEEE J.
Quantum Electron., vol. QE-18, pp. 343-351, Mar. 1982.
[2.3] C.L. Goldsmith, and B. Kanack, “Broad-Band Reactive Matching of High-Speed
Directly Modulated Laser Diodes,” IEEE Microwave and Guided Wave Lett., vol. 3,
no. 9, pp. 336-338, Sept. 1993.
[2.4] R.S. Tucker, and D.J. Pope, “Circuit Modeling of the Effect of Diffusion on Damping
in a Narrow-Stripe Semiconductor Laser,” IEEE J. Quantum Electron., vol. QE-19,
No.7, pp.1179-1183, July 1983.
[2.5] Shott Electronic Pakcaging Inc., ttp://www.schott.com/epackaging/english/index.html.
[2.6] H. Nakano, S. Sasaki, M. Maeda, and K. Aiki, “Dual-In-Line Laser Diode Module for
Fiber-Optic Transmission Up to 4 Gbit/s,” IEEE J. Lightwave Technol., vol. LT-5 , NO.
10, pp. 1403-1411, Oct. 1987.
[2.7] David K. Cheng, Field and Wave Electromagnetics 2/e. Addison Wesley Longman.
[2.8] T.Hayashi, K. Katsura, and H. Tsunetsugu, “New Hybrid Integrated Laser
Diode-Drivers Using Microsolder Bump Bonding: SPICE Simulation of High-Speed
Modulation Characteristics,” IEEE J. Lightwave Technolo., vol. 12, no. 11, pp.
1963-1970, Nov. 1994.
[2.9] S.S. Park, M.K. Song, S.G. Kang, N. Hwang, H.T. Lee, H.R. Choo, K.E. Pyun, “High
Frequency Modeling for 10Gbps DFB Laser Diode Module Packaging,” in Proc. of
ECTC1996, pp. 884-887, 1996.
[2.10] C. Shcuster, D. M. Juchta, E.G. Colgan, G.M. Cohen, J.M. Trewhella, “Package
Design and Measurement of 10Gbps Laser Diode on High-Speed Silicon Optical
Bench,” in Proc. of ECTC1996, pp. 63-410, 2003.
[2.11] S.H. Lee, J.H. Ahn, Y.K. Oh, J.S. Ma, A.G. Choo, T.I. Kim, Y. Kim, and J. Jeong,
“High Performance Modules of 2.5 Gbps Modulator Integrated DFB Lasers Using
New RF Impedance Matching Technique,” IEEE Trans. on Adav. Packaging, vol. 24,
no. 3 ,Aug. 2001.
[2.12] F. Delpiano, R. Paoletti, P. Audagnotto, and M. Puleo, “High Frequency Modeling and
Characterization of High Performance DFB Laser Modules,” IEEE Trans components,
and Manufacturing Technol., vol. 17, no. 3, pp. 412-417, Aug. 1994.
[2.13] S.H. Hall, W.L. Walters, L.F. Mattson, G.J. Fokken, and B.K. Gilbert, “VSCEL
Electrical Packaging Analysis and Design Fuidelines for Multi-GHz Applications,”
IEEE Trans components, and Manufacturing Technol., vol. 20, no. 3, pp. 191-201,Aug. 1994.
[2.14] G.J. Fokken, W. L. Walters, L.F. Mattson, and B.K. Gilbert, “Low-Cost, Multi-GHz
Electrical Packaging for Serial Optoelectronic Links Utilizing Vertical Cavity Surface
Emitting Lasers,” IEEE Trans. on Advan. Packaging, vol. 23, no. 1, Feb. 2000.
[2.15] J. Lee, S. Nam, and J. Jeong, “A complete small-signal equivalent circuit model of
cooled butterfly-type 2.5 Gbps DFB laser modules and its application to improve high
frequency characteristics,” IEEE Trans. Adv. Packag., vol. 25, no. 4, pp. 543-548,
2002.
[2.16] US-Microwave Inc., “20GHz - thin film resistors for microwave and transimpedance
amplifiers for optical communication receivers RG1215-FC,”
http://www.usmicrowaves.com/res/flip-chip/rg1215-fc.htm
[3.1] U.S. Microwaves Inc., http://www.usmicrowaves.com/res/flip-chip/rg1215-fc.htm.
[3.2] Shott Electronic Pakcaging Inc., http://www.schott.com/epackaging/English/opto_
products_windows_balllens.html.
[3.3] Kulicke & Soffa Inc., “4500 Series Manual Wire Bonders Operation and Maintenance
Manual”.
[4.1] J. Yoshida, “Low-Cost Optical Modules for Fiber-to-the-Home,” in Proc. Optical
Fiber Communication Conf., Feb. 1997, pp. 275-276.
[4.2] G. C. Joo, S. H. Lee, K. S. Park, J. S. Choi, N. Hwang, and M. K. Song, “A Novel
Bidirectional Optical Coupling Module for Subscribers,” IEEE Trans. on Advan.
Package, vol. 23, no. 7, pp. 681-685, Nov. 2000.
[4.3] S. Kaneko, T. Saito, A. Sawai, T. Hatta, and K. Kasahara, “Low-Crosstalk
Hybrid-Integrated Optical Transceiver Module Using a Polymer PLC Chip and a
MMF Stub,” IEEE Photon. Technol. Lett., vol. 13, no. 8, Aug. 2001.
[4.4] H. Blauvelt, A. Benzoni, J. Byrd, M. Downie, C. Grosjean, S. Hutchinson, R. Lee. F.
Monzon, M. Newkirk, J. Paslaski, P. Sercel, D. Vernooy, and R. Wyss, “High
Performance Planar Lightwave Circuit Triplexer with Passive Optical Assembly,” in
Proc. Optical Fiber Communication Conf., Mar. 2005, Vol. 4.
[4.5] K. Y. Kim, S. Y. Kim, M. W. Kim, and S. Jung, “Development of Compact and
Low-Crosstalk PLC-WDM Filters for Hybrid-Integrated Birectional Optical
Transceiver,” J. Lightwave Technol., vol. 23, no. 5, pp. 1913-1917 , May 2005.
[4.6] T. Hashimoto, A. Kanda, R. Kasahara, I. Ogawa, Y. Shuto, M. Yanagisawa, A. Ohki,
S. Mino, M. Ishii, Y. Suzuki, R. Nagase, and T. Kitagawa, “A Bidirectional Single
Fiber 1.25 Gb/s Optical Transceiver Module with SFP Package using PLC,” in Proc.
ECTC 2003, vol. 1, May 2006, pp. 279-283.
[4.7] H. Kimura, T. Yoshida, and K. Kumozaki, “Compact PLC-based optical transceiver
with automatic tunable filter for multi-rate applications,” Electron. Lett., vol. 39, no.
18, pp. 1319-1321, Sep. 2003.
[4.8] Y. T. Han, Y. J. Park, S. H. Park, J. U. Shin, D. J. Kim, S. W. Park, S. H. Song, K. Y.
Jung, D. J. Lee, W. Y. Hwang, and J. K. Sung, “1.25-Gb/s Birectional Transceiver
Module Using 1.5%-Δ Silica Directional Coupler-Tupe WDM,” IEEE Photon.
Technol. Lett., vol. 17, no. 11, pp. 2442-2444, Nov. 2005.
[4.9] M. Tsumori, S. H. Pyo, D. S. Shin, Y. K. Yoon, J. H. Lee, and T. Kim, “Unique 1 TO
Structure Low-Cost Optical Subassembly,” in Proc. ECTC 2004, vol. 1, May 2004,
pp. 208-211.
[4.10] H. J. Yoon, and K. N. Jun, “Compact Bidirectional Opticla Module Using Ceramic
Blocks,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1954-1956, Aug. 2004.
[4.11] D. J. Shih, Y. C. Keh, J. W. Kwon, E. H. Lee, J. K. Lee, M. K. Park, J. W. Park, Y. K.
Oh, S. W. Kim, I. K. Yun, H. C. Shin, D. Heo, J. S. Lee, H. S. Lee, H. S. Shin, H. S.
Kim, S. B. Park, D. K. Jung, S. Hwang, Y. J. Oh, D. H. Jang, and C. S. Shim,
“Low-Cost WDM-PON With Colorless Bidirectional Transceivers,” J. Lightwave
Technol., vol. 24, no. 1, pp. 158-165 , Jan. 2006.
[4.12] T. T. Shih, M. C. Lin, and W. H. Cheng, “High-Performance Low-Cost 10 Gb/s
Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and
Processes,” IEEE J. Select. Topics Quantum Electron., vol. 12, pp. 1009-1016 ,
Sept./Oct. 2006.
[4.13] “Microwave thin film chip resistor” User Guide, US Microwave Corp. Santa Clara,
CA, 2007.
[4.14] “10Gbps transimpedance amplifier” User Guide, Euvis Corp. Simi Valley, CA, 2007
[5.1] H. Takeuchi, K. Tsu, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M. Yoneyama, and T.
Otsuji, “NRZ operation at 40Gbit/s of a compact module containing am MQW
electroabsorption modulator integrated with a DFB laser,” IEEE Photon. Technol.
Lett., vol. 9 , no. 5, pp. 572-574, 1997.
[5.2] M. Sugiyama, M. Doi, S. Taniguchi, T. Nakazawa, and H. Onaka, “Driverless
40Gbit/s LiNbO3 modulator with sub-1 V drive voltage,” in Proc. of Opt. Fiber
Commun. Conf., pp. 853-856, 2002.
[5.3] K. S. Choi, Y. H. Kwon, J. S. Choe, Y. D. Chung, Y. S. Kang, J. Kim, B. T. Ahn, and
J. T. Moon, “Development of Packaging Technologies for High-Speed (>40 Gb/s)
Optical Modules,” IEEE J. Select. Topics Quantum Electron., vol. 12, pp. 1017-1024 ,
Sept./Oct. 2006.
[5.4] T. Sakamoto, S. Nobuo, S. Koike, K. Hadama, and K. Naoya, “4 channel x 10 Gbit/s
Optical Module for CWDM Links,” in Proc. ECTC 2004, vol. 1, May 2004, pp.
1024-1028.
[5.5] D. Kuchta, Y. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L.
Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. Graham, K.
Schrodinger, A. Schild, and H. M. Rein, “120 Gb/s VCSEL-Based Parallel Optical
Link and Custom 120 Gb/s Testing Station,” in Proc. ECTC 2004, vol. 1, May 2006,
pp. 1003-1011.
[5.6] K. Tsuruoka, R. Kobayashi, Y. Ohsawa, T. Tsukuda, T. Kato, T. Sasaki, and T.
Nakamura, “Four-Channel 10-Gb/s Operation of AlGaInAs-MQW-BH-DFB-LD
Array for 1.3-μm CWDM Systems,” IEEE J. Select. Topics Quantum Electron.,
vol. 11, pp. 1169-1173, Sept./Oct. 2005.
[5.7] T. Ban, R. Mita, Y. Matsuoka, H. Ichikawa, and M. Shishikura, “1.3μm
Four-Channel x 10-Gb/s Parallel Optical Transceiver With Polymer PLC Platforms
for Very-Short-Reach Applications,” IEEE J. Select. Topics Quantum Electron.,
vol. 12, pp. 1001-1007 , Sept./Oct. 2006.
[5.8] T. T. Shih, M. C. Lin, and W. H. Cheng, “High-Performance Low-Cost 10 Gb/s
Coaxial DFB Laser Module Packaging by Conventional TO-Can Materials and
Processes,” IEEE J. Select. Topics Quantum Electron., vol. 12, pp. 1009-1016 ,
Sept./Oct. 2006.
[5.9] Y. Li, C. L. Lee, D. Wang, L. Li, J. Li, F. Wu, and W. S. Tsay, “Performance of an
ultra-low loss, ultra compact, free-space packaging platform for CWDM
applications,” in Proc. of Digest of the LEOS summer topical meetings, June. 2004,
pp. 73-74.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔