(18.204.2.190) 您好!臺灣時間:2021/04/19 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:潘信宇
研究生(外文):Hsin-Yu Pan
論文名稱:以PEDOTnanorods為介面緩衝層的高分子太陽能電池之研究
論文名稱(外文):Investigation of Using PEDOT nanorods as an Interlayer and its Modification on Improving Performance of Organic Polymer Solar Cells
指導教授:張美濙
指導教授(外文):Mei-Ying Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:127
中文關鍵詞:功率轉換效率高分子太陽能電池
外文關鍵詞:PEDOT nanorodsPCBMP3HT
相關次數:
  • 被引用被引用:5
  • 點閱點閱:335
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:5
本論文中使用Poly(3-hexylthiophene) (P3HT)為電荷施體(Donor)及[6,6]-phenyl-C61- butyric acid methyl ester (PCBM)為電荷受體(Acceptor)材料,以摻混的方式溶於氯苯(Chlorobenzene),將其應用於高分子太陽能電池,其元件結構如下:ITO / PEDOT:PSS / P3HT:PCBM / Al 在AM1.5G 100mW/cm2的模擬太陽光源下量測。在穩定製程中基礎元件回火後功率轉換效率可達2%。
為了增加電洞傳輸能力,將高導電率的PEDOT nanorods塗佈於電洞傳輸層及有機主動層之間作為陽極介面層,其元件結構如下:ITO / PEDOT:PSS / PEDOT nanorods / P3HT:PCBM / Al 配製不同濃度之PEDOT nanorods層對元件效率有不同的提升,當濃度為1wt%時,PEDOT nanorods約可提升陽極緩衝層導電率一倍,進而使得元件短路電流密度提升170%,元件功率轉換效率可自2%提升至2.63%,提升幅度為30%。
因此使用PEDOT nanorods作為陽極介面層,應用於有機高分子太陽能電池元件上,確實有提升功率轉換效率的效果。探討其改善原因為PEDOT nanorods的添加使得導電率增加,造成短路電流密度增加,最後提升整體有機高分子太陽能電池元件的功率轉換效率。
In this study, P3HT and PCBM were used as donor and acceptor materials for polymer solar cells. The standard device was constructed of ITO / PEDOT:PSS / P3HT:PCBM / Al and the power conversion efficiency of 2% was achieved under AM1.5G 100mW/cm2 illumination.
In order to increase the hole transporting ability, we used PEDOT nanorods with high conductivity as an anode interlayer between the PEDOT:PSS and the P3HT:PCBM layer, with a configuration of ITO / PEDOT:PSS / PEDOT nanorods / P3HT:PCBM / Al.
According to experimental results. PEDOT nanorods dispersed well on the PEDOT:PSS surface through the spin-coating process. As the concentration of PEDOT nanorods 1wt% casting film, the conductivity of anode buffer layer raised about two times and the power conversion efficiency of device reached 2.63%. The short-circuit current and the power conversion efficiency of the polymer solar cell containing 1wt% PEDOT nanorods were obtained about 170% and 30% increasement, respectively.
In conclusion, it is quite useful to apply the PEDOT nanorods into polymer solar cells as an interlayer. The improvement in the short-circuit current which resulted in an enhancement of the power conversion efficiency originated from the increased conductivity of the buffer layer.
誌 謝................................................................................I
中文摘要........................................................................II
Abstract........................................................................III
目錄...............................................................................IV
圖目錄...........................................................................VI
表目錄...........................................................................IX
第一章 緒論....................................................................1
1-1 尋找新能源..............................................................1
1-2 有機太陽能電池簡介..............................................5
1-3 有機太陽能電池結構演進......................................7
1-4 有機太陽能電池材料簡介....................................14
1-5 導電高分子PEDOT nanorods簡介....................17
1-6 研究動機................................................................18
附錄 PEDOT nanorods製備......................................19
第二章 基本理論..........................................................23
2-1 轉移機制................................................................23
2-2 光電轉換原理........................................................25
2-3 太陽光模擬............................................................30
2-4 太陽能電池等效電路............................................36
2-5 光電特性參數........................................................38
第三章 實驗流程..........................................................43
3-1 實驗架構................................................................43
3-2 實驗藥品................................................................45
3-3 製程儀器................................................................48
3-4 量測分析儀器........................................................50
3-5 實驗步驟................................................................71
第四章 結果與討論......................................................80
4-1 材料分析結果與討論............................................80
4-2 元件製程結果與討論............................................98
4-3 綜合分析與討論..................................................109
第五章 總結................................................................111
參考文獻.....................................................................113
[1] 吳誌雄,工業材料,第87期83年3月
[2] 工業材料雜誌,太陽光電技術之介紹,第182期91年2月
[3] G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Morlarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864-869, 2005.
[4] W. Ma, C. Yang, X. Gong, K. Lee, and A.J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617, 2005.
[5] H. Kallmann, M. Pope, “Photovoltaic effect in organic crystals”, J. Chem. Phys. 30, 585-586, 1958.
[6] 陳盛煒,MEH-PPV/Short-Length Carbon Nanotubes 光伏薄膜混摻Alq3的研究,2005,中山大學,碩士論文
[7] A. Elschner, F. Bruder, H.-W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, “PEDT:PSS for efficient hole-injection in hybrid OLED”, Synthetic Metals 111-112, 139-143, 2000.
[8] X. Gong, D. Moses, A.J. Heeger, S. Liu and A.K.-Y. Jen, “High-performance PLED fabricated with a polymer hole injection layer”, Appl. Phys. Lett. 83, 1, 2003.
[9] Y. Cao, G. Yu, C. Zhang, R. Menon, A.J. Heeger, “PLED with PEDT:PSS as the transparent anode”, Synthetic Metals 87, 171-174, 1997.
[10] S. Alem, R. de Bettignies, J.-M. Nunzi, M. Cariou, “Efficent polymer-based interpenetrated network photovoltaic cells”, Appl. Phys. Lett. 84, 12, 2004.
[11] M.Y. Song, K.J. Kim, D.Y. Kim, “Enhancement of photovoltaic characteristics using a PEDOT interlayer in TiO2/MEH-PPV heterojunction devices”, Solar Energy Materials & Solar cells 85, 31-39, 2005.
[12] J. Huang, P.F. Miller, J.C. de Mello, A.J. de Mello, D.D.C. Bradley, “Influence of thermal treatment on the conductivity and morphology of PEDOT:PSS films”, Synthetic Metals 139, 569-572, 2003.
[13] J. C. Scott, J. H. Kaufman, P. J. Brock, R. DiPietro, J. Salem and J. A. Goitia, “Degradation and failure of MEH-PPV light-emitting diodes”, J. Appl. Phys. 79, 2745, 1996.
[14] M. Al-Ibrahim, H. K. Roth, M. Schroedner, A. Konkin , U. Zhokhavets , G. Gobsch , P. Scharff , S. Sensfuss, “The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells”, Organic Electronics 6, 65-77, 2005.
[15] F. Padinger, R. S. Rittberger, N. S. Sariciftci, Adv. Funct. Mater. 13, 85, 2003.
[16] E. A. Rohlfing, D. M. Cox, and A. Kaldor, J. Chem. Phys. 81, 3222, 1984.
[17] H. Spanggard, F. C. Krebs, “A Brief history of the development of organic and polymeric Photovoltaics”, Solar Energy Mater. & Solar Cells 83, 125-146, 2004.
[18] H. Shirakawa, “The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers”, Angew. Chem. Int. Ed. 40, 2642, 2001.
[19] A. G. MacDiarmid, “Synthetic Metals: A Novel Role for Organic Polymers”, Angew. Chem. Int. Ed. 40, 2649, 2001.
[20] A. J. Heeger, “Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Material”, Angew. Chem. Int. Ed. 40, 2660, 2001.
[21] H. Yoon, M. Chang, J. Jang, “Formation of 1D Poly(3,4-ethylenedioxythiophene) Nanomaterials in Reverse Microemulsions and Their Application to Chemical Sensors”, Adv. Funct. Mater. 17, 431-436, 2007.
[22] J. Jang, M. Chang, H. Yoon, “Chemical Sensor Based on Highly conductive Poly(3,4-ethylenedioxythiophene) Nanorods”, Adv. Mater. 17, 1616-1620, 2005.
[23] P. W. Atkins, Kurzlehrbuch Physikalische Chemie, 2001.
[24] M. A. Green, Solar Cells: Operating Principles, Technology, and System Application, 1982.
[25] B. Burnett, The Basic Physics and Design of Ⅲ-Ⅴ Multijunction Solar Cells, 2002.
[26] M. P. Thekackra, The Solar Cell Constant and Solar Spectrum Measurement from a Research Aircraft, 1970.
[27] 莊嘉琛,太陽能工程-太陽電池篇,全華,1997
[28] 蔡宜展,OLED新穎紅光摻雜材料特性之研究,2005,中山大學,碩士論文
[29] 陳金鑫,黃孝文,有機電激發光材料與元件,五南,2005
[30] 陳一帆,RF濺鍍式ITO薄膜沉積之後熱處理效應,2005,中山大學,碩士論文
[31] 電阻量測法參考網頁
http://www.hcstarck.de/index.php?page_id=1178
[32] P. Vacca, M. Petrosino, R. Miscioscia, G. Nenna, C. Minarini, D. D. Sala, A. Rubino, “Poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) ratio: Structural, physical and hole injection properties in organic light emitting diodes”, Thin Solid Films 516, 4232-4237, 2008.
[33] D. Gupta, M. Bag, K. S. Narayan, “Correlating reduced fill factor in polymer solar cells to contact effects”, Appl. Phys. Lett. 92, 093301, 2008.
[34] T. W. Zeng, Y. Y. Lin, H. H. Lo, C. W. Chen, C. H. Chen, S. C. Liou, H. Y. Huang, W. F. Su, “A large interconnecting network within hybrid MEH-PPV/TiO2 nanorod photovoltaic devices”, Nanotechnology 17, 5387-5392, 2006.
[35] F. L. Zhang, A. Gadisa, O. Inganas, “Influence of buffer layers on the performance of polymer solar cells”, Appl. Phys. Lett. 84, 19, 2004.
[36] 吳崇熙,介面緩衝層之特性對於有機高分子太陽能電池之研究,2007,中山大學,碩士論文
[37] 黃彥良,陽極緩衝層PEDOT:PSS之特性對於有機高分子太陽能電池的影響,2007,中山大學,碩士論文
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔