資料載入處理中...
:::
網站導覽
|
首頁
|
關於本站
|
聯絡我們
|
國圖首頁
|
常見問題
|
操作說明
English
|
FB 專頁
|
Mobile
免費會員
登入
|
註冊
切換版面粉紅色
切換版面綠色
切換版面橘色
切換版面淡藍色
切換版面黃色
切換版面藍色
(3.238.174.50) 您好!臺灣時間:2021/04/16 16:23
字體大小:
字級大小SCRIPT,如您的瀏覽器不支援,IE6請利用鍵盤按住ALT鍵 + V → X → (G)最大(L)較大(M)中(S)較小(A)小,來選擇適合您的文字大小,如為IE7或Firefoxy瀏覽器則可利用鍵盤 Ctrl + (+)放大 (-)縮小來改變字型大小。
字體大小變更功能,需開啟瀏覽器的JAVASCRIPT功能
詳目顯示
:::
recordfocus
第 1 筆 / 共 1 筆
/1
頁
論文基本資料
摘要
外文摘要
目次
參考文獻
紙本論文
QR Code
本論文永久網址
:
複製永久網址
Twitter
研究生:
蔡穎晟
研究生(外文):
Ying-Chen Tsai
論文名稱:
無機奈米金屬摻雜於有機高分子之太陽能電池特性研究
論文名稱(外文):
The Study of Organic Solar Cell Doped with Metallic Nanoparticle
指導教授:
張美濙
指導教授(外文):
Mei-Ying Chang
學位類別:
碩士
校院名稱:
國立中山大學
系所名稱:
光電工程研究所
學門:
工程學門
學類:
材料工程學類
論文種類:
學術論文
論文出版年:
2008
畢業學年度:
96
語文別:
中文
論文頁數:
99
中文關鍵詞:
有機高分子
、
太陽能電池
外文關鍵詞:
P3HT
、
Pd nanoparticles
、
Pt nanoparticles
、
organic solar cell
、
PCBM
相關次數:
被引用:0
點閱:200
評分:
下載:0
書目收藏:5
本論文主要研究無機奈米金屬粒子與有機高分子混成材料之電荷傳輸特性。電荷在有機高分子材料之遷移速率極低,因以混摻無機奈米金屬粒子於有機高分子之方法,本論文所使用的無機奈米金屬是Pt NPs與Pd NPs,藉以增加電荷傳輸速率,進而改善有機太陽能電池的功率轉換效率。主動層材料以poly(3-hexylthiophene)(P3HT)為電荷施體(Donor)材料及[6,6]-phenyl-C61-Butyric acid methyl ester
(PCBM)為電荷受體(Acceptor)材料,P3HT具高穩定度,及於可見光有高吸收度;PCBM具高穩定度且有良好的電子傳輸特性。
本論文主要將改質過之無機奈米金屬粒子:Pt NPs 與Pd NPs,摻雜於主動層材料中,其元件結構如下:ITO/PEDOT:PSS/P3HT:PCBM:Pt NPs/Al與ITO/PEDOT:PSS/P3HT:PCBM:Pd NPs/Al兩種,在AM 1.5G 100mW/cm2的模擬太陽光源下量測,Pt NPs結果:開路電壓維持在0.64V,而短路電流可由6.67mA/cm2提升至9mA/cm2,能量轉換效率由1.96%提升到3.08%。另一種無機奈米金屬Pd NPs結果:開路電壓維持在0.62V,短路電流可由6.33mA/cm2提升至7.33mA/cm2,功率轉換效率由1.7%提升到2.48%。
所以摻雜Pt NPs與Pd NPs確實都可以改善電荷傳輸,提高短路電流,最終提升元件功率轉換效率。
Polymers are with low carrier mobility. If polymer solar cells are to exhibit high power conversion efficiencies, their carrier mobilities must be improved. Metallic NPs are promising materials for use in polymer solar cells because of their high conductivities.
In this work, we studied the carrier transport characteristic of metallic nanoparticle blending into polymers. We blended Pt nanoparticles (Pt NPs) and Pd nanoparticles (Pd NPs) into polymers to improve carrier mobility, and enhance the power conversion efficiency of the polymer solar cell. P3HT was used as a donor material because of its high stability and with high absorption in visible light. PCBM was used as a acceptor material because of its high stability and with high electron transportation.
We blended modified Pt NPs and Pd NPs into the P3HT:PCBM active layer, with the device configurations of ITO/PEDOT:PSS/P3HT:PCBM:
Pt NPs/Al and ITO/PEDOT:PSS/P3HT:PCBM:Pd NPs/Al, respectively polymer solar cells measured was under AM 1.5G 100mW/cm2 illumination. When we blended Pt NPs into the active layer, the open-circuit remained 0.64V, the short-circuit current increased from 6.67mA/cm2 to 9mA/cm2, the power conversion efficiency increased from 1.96% to 3.08%. When we blended Pd NPs into the active layer, the open-circuit remained 0.62V, the short-circuit current increased from 6.33mA/cm2 to 7.33mA/cm2, the power conversion efficiency increased from 1.7% to 2.48%.
The enhanced efficiency originated from the increased carrier mobility of the active layer when the Pt NPs or Pd NPs were present.
誌謝.....................................................................................................I
中文摘要.............................................................................................II
Abstract...............................................................................................III
目錄.....................................................................................................IV
圖目錄.................................................................................................VIII
表目錄.................................................................................................XI
第一章 緒論.......................................................................................1
1-1 替代性能源..........................................................................1
1-2 太陽能電池的定義..............................................................1
1-3 太陽能電池發展之三個世代..............................................2
1-4 有機與無機太陽能電池之介紹..........................................2
1-5 有機太陽能電池結構演進..................................................5
1-5-1 單層結構有機太陽能電池.......................................5
1-5-2 雙層異質界面結構有機太陽能電池.......................6
1-5-3 混合層異質界面結構有機太陽能電池...................7
1-5-4 接合層異質界面結構有機太陽能電池...................8
1-6 研究動機..............................................................................9
第二章 理論基礎...............................................................................10
2-1 能量及電荷轉移機制..........................................................10
2-2 光電轉換原理......................................................................11
2-3 太陽能電池等效電路..........................................................17
2-4 光電特性參數......................................................................19
2-4-1 短路電流(Isc)......................................................20
2-4-2 開路電壓(Voc)....................................................21
2-4-3 填充因子(F.F.).....................................................21
2-4-4 功率轉換效率(ηP)..............................................22
2-5 太陽光模擬..........................................................................23
第三章 實驗流程、製程設備與量測儀器.......................................28
3-1 實驗架構..............................................................................28
3-2 實驗材料..............................................................................29
3-2-1 陽極:ITO................................................................29
3-2-2 電洞傳輸層材料:PEDOT:PSS...........................30
3-2-3 主動層電荷施體材料:P3HT.................................31
3-2-4 主動層電荷受體材料:PCBM...............................31
3-2-5 無機奈米金屬材料:Pt NPs...................................32
3-2-6 無機奈米金屬材料:Pd NPs..................................34
3-2-7 溶劑:Chloroform...................................................34
3-2-8 陰極:Alumina........................................................34
3-3 藥品的配製..........................................................................35
3-3-1 PEDOT:PSS 材料..................................................35
3-3-2 P3HT:PCBM:Pt NPs 材料..................................35
3-3-3 P3HT:PCBM:Pd NPs 材料.................................35
3-4 實驗步驟..............................................................................35
3-4-1 ITO陽極圖形化........................................................36
3-4-2 ITO玻璃基版清洗....................................................38
3-4-3 有機高分子太陽能電池元件製程...........................39
3-5 製程設備..............................................................................41
3-5-1超音波清洗機(Ultrasonic cleaning)....................41
3-5-2 加熱盤(Hot plate)................................................41
3-5-3 電漿清洗機(O2 plasma)......................................41
3-5-4 旋轉塗佈機(Spin coater)....................................42
3-5-5 手套箱(Glove box)..............................................42
3-5-6 蒸鍍機(Evaporator).............................................43
3-5-7 紫外光曝光機(UV exposure).............................43
3-6 量測儀器..............................................................................44
3-6-1 紫外光/可見光光譜儀(UV-Vis).........................44
3-6-2 光電子光譜分析儀(AC-2)..................................45
3-6-3 表面輪廓儀(Surface profiler).............................46
3-6-4 原子力顯微鏡(AFM)..........................................47
3-6-5 掃瞄式電子顯微鏡(SEM)..................................50
3-6-6 穿透式電子顯微鏡(TEM)..................................51
3-6-7 太陽光譜模擬量測系統(Solar simulator system)
...................................................................................51
第四章 結果與討論...........................................................................53
4-1 材料光性..............................................................................53
4-2 材料物性..............................................................................55
4-2-1 功函數.......................................................................55
4-2-2 表面成膜粗糙度.......................................................57
4-2-3 分子結構大小...........................................................69
4-3 元件特性..............................................................................72
4-4 Pt NPs與Pd NPs結果相互比較.........................................77
第五章 總結.......................................................................................78
參考文獻.............................................................................................79
[1] Efficient inverted polymer solarcells Applied physics letters 88,253503 (2006)
[2] Optimization of process parameters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system
Solar Energy Materials & Solar Cells 91,1187–1193 (2007)
[3] Effects of solvent and annealing on the improved performance of solar cells based on poly.3-hexylthiophene: Fullerene Applied Physics Letters 86, 201120 (2005)
[4] Thernally Stable,Efficient Polymer Solar Cell with Nanoscale Control of the Interpenetrating Network Morphology Adv.Funct.Mater 15,1617-1622 (2005)
[5] Highly Conductive Flexible Transparent Polymeric Anode and its Application in OLEDs Electronic Components and Technology Conference 1536 (2007)
[6] Modified buffer layers for polymer photovoltaic devices Applied physics letters 90,063509 (2007)
[7] Investigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylth
-iophene) Journal of applied physics98,043704 (2005)
[8] P3HT/PCBM bulk heterojunction solar cells:Relation between morphology and electro-optical characteristics Solar Energy Materials & solar Cells 90,2150-2158(2006)
[9] Nanoparticle-polymer photovoltaic cells Advances in Colloid and interface Science (2007)
[10] Nanoscale Structure of Solar Cells Based on Pure Conjugated Polymer Blends Progress in photovolatics:
research and applications15,727-740(2007)
[11] Efficient polymer-nanocrystal quantum-dot photodetectors Applied physics letters 86,093103 (2005)
[12] Improving power conversion efficiency in polythiophene/
fullerene-based bulk heterojunction solar cells Solar Energy Materials & Solar cells 91,757-763 (2007)
[13] Modeling the short-circuit current density of polymer solar cells based on P3HT:PCBM blend Sloar EnergyMaterials & Solar Cells 91,405-410 (2007)
[14] Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer Chemical physics letters 453,73-76 (2008)
[15] Effect of film thickness and morphology on the performance of photoelectrochemical cells based on poly(terthiophene
Solar Energy Materials & Solar Cells 91,1127-1136(2007)
[16] 黃彥良,碩士論文,國立中山大學光電工程研究所,2007
[17] 吳崇熙,碩士論文,國立中山大學光電工程研究所,2007
[18] 黃堂正,碩士論文,國立中山大學光電工程研究所,2008
[19] 莊嘉琛,太陽能工程-太陽電池篇,全華,1997
[20] 張正華,有機與塑膠太陽能電池,五南,2007
[21] 沈輝、曾祖勤,太陽能光電技術,五南,2008
[22] 林明獻,太陽能電池技術入門,全華,2007
國圖紙本論文
推文
當script無法執行時可按︰
推文
網路書籤
當script無法執行時可按︰
網路書籤
推薦
當script無法執行時可按︰
推薦
評分
當script無法執行時可按︰
評分
引用網址
當script無法執行時可按︰
引用網址
轉寄
當script無法執行時可按︰
轉寄
top
相關論文
相關期刊
熱門點閱論文
1.
二氧化鈦奈米粒子摻混於有機感光層以提升高分子/富勒烯單層異質接面太陽能電池之光電轉換效率
2.
介面緩衝層之特性對於有機高分子太陽能電池之研究
3.
以微觀機械性質探討有機高分子/富勒烯異質接面太陽能電池之分子組成與光電效率的關係
4.
利用微奈米轉印技術製作高次序體異質接面結構有機太陽能電池
5.
聚-3己烷塞吩/富勒烯(C61)衍生物之有機太陽能電池效率測試
6.
應用於可撓式基板上之有機高分子太陽能電池製程研究
7.
主動層慢成長對高分子有機太陽能電池特性之影響
8.
有機與無機太陽能電池製備研究
9.
功能化有機分子/聚合物/奈米材料之生物辨識或太陽能運用
10.
聚苯胺薄膜應用於有機高分子太陽能元件中之研究
11.
應用田口法於硬質式PCBM/P3HT/MWCNT異質混合太陽能電池之參數設計
12.
多壁奈米碳管/可撓式有機高分子光電池之穩健設計
13.
刮刀塗佈技術於有機太陽能電池與多層結構有機鄰近感測器的應用
14.
藉由在通道材料內添加奈米碳管以修改有機薄膜電晶體之光電特性
15.
軟性基板之有機太陽能電池製程研究
無相關期刊
1.
無機奈米金屬/共軛高分子混層材料作為高分子太陽能電池之研究
2.
以金屬誘發結晶法研製太陽能電池之低溫多晶矽薄膜
3.
表面粗化在化合物半導體太陽能電池特性影響之研究
4.
改善二氧化鈦電極及染料以優化染料敏化太陽能電池之效率
5.
聚苯胺薄膜應用於有機高分子太陽能元件中之研究
6.
以電泳沈積法製作可撓曲染料敏化太陽能電池
7.
有機無機混合式太陽能電池的製備以及P型氧化鋅薄膜的製備
8.
主動層共軛高分子支鏈結構改變對有機太陽能電池之研究
9.
太陽能電池陣列等效電路參數之計算
10.
染料敏化太陽能電池用TiO2-WO3電極製備及電池特性探討
11.
薄膜太陽能電池產業結構與競爭動態研究
12.
高分子太陽能電池–可撓性元件及多層結構製程技術
13.
奈米結構單晶矽太陽能電池之製程及研究
14.
可撓式CuInSe2薄膜太陽能電池之研製
15.
可撓式CuInSe2薄膜太陽能電池之研製
簡易查詢
|
進階查詢
|
熱門排行
|
我的研究室