|
Chapter 1 [1.1]P. M. W. French, N. H. Rizvi, J. R. Taylor, and A. V. Shestakov, “Continuous-wave mode-locked Cr4+:YAG laser,” Optics Letter 18, 39 (1993). [1.2]Y. Ishida and K. Naganuma, “Compact diode-pumped all-solid-state femtosecond Cr4+:YAG laser,” Optics Letters 21, 51 (1996). [1.3]N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Japanese Journal of Applied Physics 40, 1253 (2001). [1.4]K. Takaichi, J. Lu, T. Murai, T. Uematsu, A. Shirakawa, K. Ueda, H. Yagi, T. Yanagitani, and A. A. Kaminskii, “Chromium doped Y3Al5O12 ceramics- a novel saturable absorber for passively self-Q-switched one-micron solid state lasers,” Japanese Journal of Applied Physics 41, 96 (2002). [1.5]H. Yagi, T. Yanagitani, H. Yoshida, M. Nakatsuka, and K. Ueda, “Highly efficient flashlamp-pumped Cr3+ and Nd3+ codoped Y3Al5O12 ceramic laser,” Japanese Journal of Applied Physics 45, 133 (2006). [1.6]C. Y. Lo, K. Y. Huang, J. C. Chen, S. Y. Tu, and S. L. Huang, “Glass-clad Cr4+:YAG crystal fiber for the generation of superwideband amplified spontaneous emission,” Optics Letter 29, 439 (2004). [1.7]C. Y. Lo, K. Y. Huang, J. C. Chen, C. Y. Chuang, C. C. Lai, S. L. Huang, Y. S Lin, and P. S. Yeh, “Double-clad Cr4+:YAG crystal fiber amplifier,” Optics Letter 30, 129 (2005). [1.8]S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Near-infrared emission of Cr4+-doped garnets: Lifetimes, quantum efficiencies, and emission cross sections,” Physical Review B 51 (24), 17323 (1995). [1.9]R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 um,” Electronics Letters 23, 1026 (1987). [1.10]E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave fiber amplifier,” Optics Letters 12, 888 (1987). [1.11]J. F. Massicott, J. R. Armitage, R. Wyatt, B. J. Ainslie, and S. P. Craig-Ryan, “High gain, broadband, 1.6 um Er3+ doped silica fiber amplifier,” Electronics Letters 26, 1645 (1990). [1.12]E. Ishikawa, M. Nishihara, Y. Sato, C. Ohshima, Y. Sugaya, and J. Kumasako, “Novel 1500 nm-band EDFA with discrete Raman amplifier,” Proceeding of European Conference on Optical Communication, 48 (2001). [1.13]C. A. Millar and P. W. France, “Diode-laser pumped erbium-doped fluorozirconate fiber amplifier for the 1530 nm communications window,” Electronics Letters 26, 634 (1990). [1.14]Y. Ohishi, A. Mori, M. Yamada, H. Ono, Y. Nishida, and K. Oikawa, “Gain characteristics of tellurite-based erbium-doped fiber amplifiers for 1.5-um broadband amplification,” Optics Letters 23, 274 (1998). [1.15] T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, “1.47 um band Tm3+ doped fluoride fiber amplifier using a 1.064 um upconversion pumping scheme,” Electronics Letters 29, 110 (1993). [1.16]T. Kasamatsu, Y. Yano, and H. Sekita, “1.50-um-band gain-shifted thulium-doped fiber amplifier with 1.05- and 1.56-um dual-wavelength pumping,” Optics Letters 24, 1684 (1999). [1.17]A. Cucinotta, F. Poli, and S. Selleri, “Gain characteristics of thulium-doped tellurite fiber amplifiers by dual-wavelength (800 nm+1064 nm) pumping,” Optical Fiber Communications Conference, Post Conference Digest 86, paper FB1 (2003). [1.18]B. Cole and M. L. Dennis, “S-band amplification in a thulium doped silicate fiber,” Optical Fiber Communication Conference, Post Conference Digest 54, paper TuQ3 (2001). [1.19]R. S. Feigelson, “Pulling optical fibers,” Journal of Crystal Growth 79, 669 (1986). [1.20]A. Sugimoto, Y. Nobe, and K. Yamagishi, “Near-infrared laser crystals based on 3d2 ions spectroscopic studies of 3d2 ions in oxide, melilite and apatite crystals,” Journal of Crystal Growth 140, 349 (1994). [1.21]S. Kuck, U. Pohlmann, K. Petermann, G. Huber, and T. Schonherr, “High resolution spectroscopy of Cr4+ doped Y3Al5O12,” Journal of Luminescence 60-61, 192 (1994). [1.22]S. Fukaya, K. Adachi, M. Obara, and H. Kumagai, “The growth of Cr4+:YAG and Cr4+:GGG thin films by pulsed laser deposition,” Optics Communications 187, 373 (2001). [1.23]S. Ishibashi, K. Naganuma, and I. Yokohama, “Cr,Ca:Y3Al5O12 laser crystal grown by the laser-heated pedestal growth method,” Journal of Crystal Growth 183, 614 (1998). [1.24]M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Review of Scientific Instruments 55, 1791 (1984). [1.25]A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994). [1.26]J. C. Chen, C. Y. Lo, K. Y. Huang, F. J. Kao, S. Y. Tu, and S. L. Huang, “Fluorescence mapping of oxidation states of Cr ions in YAG crystal fibers,” Journal of Crystal Growth 274, 522 (2005).
Chapter 2 [2.1]S. C. Abrahams and S. Geller, “Refinement of the structure of a gossularite garnet” Acta Crystallographica 11, 893 (1958). [2-2]L. I. Krutova, N. A. Kulagin, V. A. Sandulenko, and A. V. Sandulenko, “Electronic state and positions of chromium ions in garnet crystals” Fiz. Tverd. Tela (Leningrad) 31, 170 (1989). [Sov. Phys. Solid State 31, 1193 (1989).] [2.3]M. A. Gülgün, W. Y. Ching, Y. N. Xu, and M. Rühle, “Electron states of YAG probed by energy-loss near-edge spectrometry and Ab initio calculations,” Philosophical Magazine B 79, 921 (1999). [2.4]A. A. Kaminskii, “Laser crystals. Their physics and properties 2nd,” Springer, New York (1990). [2.5]C. Batchelor, W. J. Chung, S. Shen, and A. Jha, “Enhanced room-temperature emission in Cr4+ ions containing alumino-silicate glasses,” Applied Physics Letter 82, 4035 (2003). [2.6]D. S. McClure, “Electronic spectra of molecules and ions in crystals,” Academic Press, New York and London (1959). [2.7]G. Boulon, “Effects of disorder on the spectral properties of Cr-doped lasses, glass ceramics and crystals,” Disordered Solids: Structure and Processes, Plenum Press, New York (1988). [2.8]Y. Kalisky, “Cr4+-doped crystals: their use as lasers and passive Q-switches,” Progress in Quantum Electronics 28, 249 (2004). [2.9]Y. Tanabe and S. Sugano, “On the absorption spectra of complex ions I,” Journal of Physical Society Japan 9, 753 (1954). [2.10]A. L. Schawlow, “Fine-line spectra of chromium ions in crystal,” Journal of Applied Physics 33, 395 (1962) [2.11]S. Sugano, Y. Tanabe, and H. Kamimura, “Multiplets of transition-metal ions in crystals,” Academic, New York (1970). [2.12]Y. R. Shen and K. L. Bray, “Effect of pressure and temperature on the lifetime of Cr3+ in yttrium aluminum garnet,” Physical Review B 56, 10882 (1997) [2.13]J. C. Chen, K. Y. Huang, C. N. Tsai, Y. S. Lin, C. C. Lai, G. Y. Liu, F. J. Kao, S. L. Huang, C. Y. Lo, Y. S. Lin, and P. Shen, “Composition dependence of the microspectroscopy of Cr ions in double-clad Cr:YAG crystal fiber,” Journal of Applied Physics 99, 093113 (2006). [2.14]M. Grinberg, J. Barzowska, Y. R. Shen, K. L. Bray, B. V. Padlyak, and P. P. Buchynskii, “High-pressure luminescence of Cr3+-doped CaO-Ga2O3-GeO2 glasses,” Physical Review B 65, 064203 (2002). [2.15]J. Dong, P. Deng, and J. Xu, “Study of the effects of Cr ions on Yb in Cr,Yb:YAG crystal,” Optics Communications 170, 255 (1999).
[2.16]J. P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, “Nature of the luminescence from YAG:Cr3+,” Journal of Physics C: Solid State Physics 7, 2241 (1974). [2.17]B. M. Tissue, W. Jia, L. Lu, and W. M. Yen, “Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant,” Journal of Applied Physics 70, 3775 (1991). [2.18]A. Sugimoto, Y. Nobe, and K. Yamagishi, “Crystal growth and optical characterization of Cr,Ca:Y3Al5O12,” Journal of Crystal Growth 140, 349 (1994). [2.19]S. A. Markgraf, M. F. Pangborn, and R. Dieckmann, “Influence of different divalent co-dopants on the Cr 4 + of Cr-doped Y3Al5O12 content,” Journal of Crystal Growth 180, 81 (1997). [2.20]Http://www.webelements.com. [2.21]K. R. Brown and D. A. Bonnell, “Cation segregation to yttrium aluminum garnet (111) surface,” Surface Science 414, 341 (1998). [2.22]L. Schuh, R. Metselaar, and G. de With, “Electrical transport and defect properties of Ca- and Mg-doped yttrium aluminum garnet ceramics,” Journal of Applied Physics. 66, 2627 (1989). [2.23]H. Eilers, U. Hommerich, S. M. Jacobsen, W. M. Yen, K. R. Hoffman, and W. Jia, “Spectroscopy and dynamics of Cr4+:Y3Al5O12,” Physical Review B 49 (22), 15505 (1994). [2.24]S. Kuck, K. Petermann, U. Pohlmann, and G. Huber, “Electronic and vibronic transitions of the Cr4+-doped garnets Lu3Al5O12, Y3Al5O12, Y3Ga5O12 and Gd3Ga5O12,” Journal of Luminescence 68, 1 (1996). [2.25]R. Moncorge, D. J. Simkin, G. Cormier, and J. A. Capobianco, “Spectroscopic properties and fluorescence dynamics in chromium-doped forsterite,” Tunable Solid State Lasers 5, 93 (1989). [2.26]C. Deka, M. Bass, B. H. T. Chai, and Y. Shimony, “Optical spectroscopy of Cr4+:Y2SiO5,” Optical Society of America B 10, 1499 (1993). [2.27]H. Eilers, W. M. Dennis, W. M. Yen, S. Kück, K. Peterman, G. Huber, and W. Jia, “Performance of a Cr:YAG Laser,” IEEE Journal of Quantum Electronics 29, 2508 (1993). [2.28]Y. Chang, “Ultrashort Optical Pulse Generation from a Cr4+-doped Yttrium Aluminium Garnet Tunable Solid-state Laser,” Ph. D. Dissertation, Université de Montréal, Quebec, Canada, (1999). [2.29]L. I. Krutova, A. V. Lukin, V. A. Sandulenko, E. A. Sidorova, and V. M. Solntsev, “Phototropic centers in chromium-doped garnets,” Optics and Spektrosk 63, 1174 (1987). [Optics and Spectroscopy (USSR) 63, 693 (1987).] [2.30]S. B. Ubiszkii, S. S. Melnyk, B. V. Padlyak, A. O. Matkovskii, A. J.-Frydel, and Z. Frukacz, “Chromium recharging processes in the Y3Al5O12: Mg, Cr single crystal under the reducing and oxidizing annealing influence,” Proceedings of SPIE 4412, 63 (2001). [2.31]B. Henderson, H. G. Gallagher, T. P. J. Han, and M. A. Scott, “Optical spectroscopy and optimal crystal growth of some Cr4+-doped garnets,” Journal of Physics: Condensed Matter 12, 1927 (2000). [2.32]A. G. Okhrimchuk, and A. V. Shestakov, “Performance of YAG: Cr4+ laser crystal,” Optical Material 3, 1 (1994).
Chapter 3 [3.1]C. Y. Lo, “Growth, characterization, and application of doped-YAG single-crystal fibers,” Ph.D. dissertation, Taiwan (2004). [3.2]J. Y. Ji, P. Shen, J. C. Chen, F. J. Kao, S. L. Huang, and C. Y. Lo, “On the deposition of spinel particles upon laser-heated pedestal growth of Cr:YAG fiber,” Journal of Crystal Growth 282, 343 (2005). [3.3]J. C. Chen, “Spectroscopic study on the fluorescence of Cr ions in double-clad Cr:YAG crystal fiber,” Ph.D. dissertation, Taiwan (2006). [3.4]D. Jun, D. Peizhen, and X. Jun, “The growth of Cr4+, Yb3+:Yttrium Aluminum Garnet (YAG) crystal and its absorption spectra properties,” Journal of Crystal Growth 203, 163 (1999). [3.5]B. Cockayne, “Developments in melt-grown oxide crystals,” Journal of Crystal Growth 3-4, 60 (1968). [3.6]N. I. Borodin, V. A. Zhitnyuk, A. G. Okhrimchuk, and A. V. Shestakov, “Oscillation of an Y3Al5O12:Cr4+ laser in the wavelength region of 1.35-1.6 um,” Bulletin of the Academy of Sciences of the USSR Physical Series 54, 54 (1990).
Chapter 4 [4.1]P. Kisliuk and W. F. Krupke, “Exchange interactions between Chromium ions in Ruby,” Journal of Applied Physics 36, 1025 (1965). [4.2]W. C. Zheng, “Determination of the local compressibilities for Cr3+ ions in some garnet crystals from high-pressure spectroscopy,” Journal of Physics: Condensed Matter 7, 8351 (1995). [4.3]B. Lipavsky, Y. Kalisky, Z. Burshtein, Y. Shimony, and S. Rotman, “Some optical properties of Cr4+-doped crystals,” Optical Materials 13, 117 (1999).
Chapter 5 [5.1]P. Yang, P. Deng, Z. Yin, and Y. Tian, “The growth defects in Czochralski-grown Yb:YAG crystal,” Journal of Crystal Growth 218, 87 (2000). [5.2]H. Udono and I. Kikuma, “Etch pits observation and etching properties of δ-FeSi2,” Materials Science in Semiconductor Processing 6, 413 (2003). [5.3]A. Sennaroglu, “Analysis and optimization of lifetime thermal loading in continuous-wave Cr4+-doped solid-state lasers,” Journal of the Optical Society of America B 18, 1578 (2001). [5.4]A. Suda, A. Kadoi, K. Nagasaka, H. Tashiro, and K. Midorikawa, “Absorption and oscillation characteristics of a pulsed Cr4+:YAG laser investigated by a double-pulse pumping technique,” IEEE Journal of Quantum Electronics 35, 1548 (1999). [5.5]P. C. Becker, N. A. Olsson, and J. R. Simpson, “Erbium-doped fiber amplifiers: Fundamentals and Technology,” Academic Press, San Diego, (1999).
|