|
[1.1]T. L. Koch and U. Koren, “Semiconductor Photonic Integrated Circuits,” IEEE J. Quantum Electron., vol. 27, pp. 641- 653, 1991. [1.2]E. J. Skogen, J. S. Barton, S. P. Denbaars and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Topics. Quantum Electron., vol. 8, pp. 863- 869, 2002. [1.3]M. Kohtoku, S. Oku, Y. Kadota, Y. Shibata, and Y. Yoshikuni, “200-GHz FSR Periodic Multi/Demultiplexer with Flattened Transmission and Rejection Band by using a Mach-Zehnder Interferometer with a Ring Resonator ,” IEEE Photon. Technol. Lett., vol. 12, pp. 1174-1176, 2000. [1.4]B. Liu, A. Shakouri, and J. E. Bowers, “Wide Tunable Double Ring Resonator Coupled Lasers,” IEEE Photon. Technol. Lett., vol. 14, pp. 600-602, 2002. [1.5]P. Jayavel, T. Kita, O. Wada, H. Ebe, M. Sugawara, Y. Arakawa, Y. Nakata and T. Akiyama, “Optical Polarization Properties of InAs/GaAs Quantum Dot Semiconductor Optical Amplifier ,” Jpn. J. Appl. Phys. Vol. 44, pp. 2528- 2530, 2005. [1.6]T. Akiyama, N. Hatori, Y. Nakata, H. Ebe and M. Sugawara, “Pattern-effect-free semiconductor optical amplifier achieved using quantum dots,” Electron. Lett., vol. 38, pp. 1139- 1140, 2002. [1.7]T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K Mukai, M. Sugawara and O. Wada, “Nonlinear gain dynamics in quantum-dot optical amplifiers and its application to optical communication devices,” IEEE J. Quantum Electron., vol. 37, pp. 1059- 1065, 2001. [1.8]S. D. McDougall, O. P. Kowalski, C. J. Hamilton, F. Camacho, B. Qiu, M. Ke, R. M. De La Rue, A. C. Bryce and J. H. Marsh, ” Monolithic integration via a universal damage enhanced quantum-well-intermixing technique,” IEEE J. Sel. Topics. Quantum Electron., vol. 40, pp. 636- 646, 1998. [1.9]M. N. Khan, J. E. Zucker, T. Y. Chang, N. J. Sauer, M. D. Divino, T. L. Coch, C. A. Burrus, and H. M. Presby, “Design and Demonstration of Weighted-Coupling InGaAs/InGaAlAs Electron Transfer Waveguides,” J. Lightwave Technology, vol. 12, pp. 2032-2039, 1994. [1.10]Y. Siberberg, P. Perlmutter, and J. E. Baran, “Digital Optical Switch,” Appl. Phys. Lett., vol. 51, pp. 1230-1232, 1987. [1.11]P. J. A. Thijs, L. F. Tiemijer, P. I. Kuindersma, J. J. M. Binsma, and T. Van Dongen, “High performance of 1.5 μm wavelength InGaAs-InGaAsP strained quantum-well lasers and amplifiers,” IEEE J. Quantum Electron., vol. 27, pp. 1426-1438, 1991. [1.12]P. J. A. Thijs, L. F. Tiemijer, J. J. M. Binsma, and T. Van Dongen, “Progress in long-wavelength strained-layer InGaAs(P) quantum-well semiconductor lasers and amplifiers,” IEEE J. Quantum Electron., vol. 30, pp. 477-499, 1994. [1.13]J. Minch, S. H. Park, T. Keating, and S. L. Chuang, “Theory and Experiment of In1-xGaxAsyP1-y and In1-x-yGaxAlyAs Long-Wavelength Strained Quantum-Well Lasers,” IEEE J. Quantum Electron., vol. 35, pp. 771-782, 1999. [1.14]J. C. L. Yong, J. M. Rorison, and I. H. White, “1.3-μm Quantum-Well InGaAsP, AlGaInAs, and InGaAsN Laser Material Gain: A Theoretical Study,” IEEE J. Quantum Electron., vol. 38, pp. 1553-1564, 2002. [1.15]L. A. Coldren and S. W. Corzine: Diode Laser and Photonic Integrated Circuits, (John Wiley & Sons, New York, 1995), P. 137. [1.16]H. Haug and S. W. Koch: Quantum theory of the optical and electronic properties of semiconductors, (World Scientific, Singapore, 1994) 3rd ed., p.250. [1.17]A. Yariv: Optical Electronics in Modern Communications, (Oxford University Press, Oxford, 1997) 5th ed., p. 328. [1.18]J. E. Zucker, T. Y. Chang, M. Wegener, N. J. Sauer, K. L. Jones, and D. S. Chemla, “Large refractive index changes in tunable-electron-density InGaAs/InAlAs quantum wells,” IEEE Photonics Technol. Lett., vol. 2, pp. 29-31, 1990. [1.19]T. Mukai, Y. Yamamoto and T. Kimura: Semiconductors and Semimetals, ed. W. T. Tsang (Academic Press, New York, 1985) Vol. 22, Part E. [1.20]K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett., vol. 52, pp.1945-1947, 1988. [1.21]A. Niwa, T. Ohtoshi, K. Uomi, and K. Nakahara, “Doping-type dependence of turn-on delay time in 1.3 μm InGaAsP-InP modulation-doped strained quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 328-330, 1996.
[2.1]J. C. L. Yong, J. M. Rorison, and I. H. White, “1.3-m Quantum -Well InGaAsP, AlGaInAs, and InGaAsN Laser Material Gain: A Theorectical Study,” IEEE J. Quantum Electron., vol. 38, pp. 1553-1564, 2002. [2.2]T. Mukai, Y. Yamamoto and T. Kimura: Semiconductors and Semimetals, ed. W. T. Tsang (Academic Press, New York, 1985) vol. 22, Part E. [2.3]K. J. Vahala and C. E. Zah, “Effect of doping on the optical gain and the spontaneous noise enhancement factor in quantum well amplifiers and lasers studied by simple analytical expressions,” Appl. Phys. Lett., vol. 52, pp.1945-1947, 1988. [2.4]M. K. Chin, T. Y. Chang and W. S. Chang, “Generalized blockaded reservoir and quantum-well electron-transfer structures (BRAQWETS): modeling and design considerations for high performance waveguide phase modulators,” IEEE J. Quantum Electron., vol. 28, pp. 2596-2611, 1992. [2.5]B. W. Wessels, “Morphological stability of strained–layer semiconductors,” J. Vac. Sci. Technol. B, vol. 15, pp. 1056- 1058, 1997. [2.6]M. J. Mondry, D. I. Babic, J. E. Bowers, and L. A. Coldern, “Refractive index of (Al, Ga, In)As Epilayers on InP for optoelectronic applications”, IEEE Photon. Technol. Lett., vol. 4, pp. 627-630, 1992. [2.7]S. Nojima and H. Asahi, “Refractive index of InGaAs/InAlAs multi-quantum-well layers grown by molecular beam epitaxy”, J. Appl. Phys., vol. 63, pp. 479-483, 1998. [2.8]P. Martin, E. M. Skour, L. Chusseau, C. Alibert, and H. Bissessur, “Accurate refractive index measurement of doped and undoped InP by a grating coupling technique”, Appl. Phys. Lett., vol. 67, pp. 881-883, 1995. [2.9]P. Bhattacharya, Semiconductor Optoelectronic Devices (2nd, Prentice-Hall, New Jersey, 1994), Appendix 18.
[3.1]R. Sacks, R. Sieg, S Ringel, “Investigation of the Accuracy of Pyrometric Interferometry in Determining AlxGa1-xAs Growth Rates and Compositions,” J. Vac. Sci. Tech. B, vol. 12, pp. 2157-2162, 1996. [3.2]P. Pinsukanjana, A. Jackson, J. Tofte, K. Maranowski, S. Campbell, J. English, S. Chalmers, L. Coldren, and A. Gossard, “Real-time Simultaneous Optical-Based Flux Monitoring of Al, Ga, and In using Atomic Absorption for Molecular Beam Epitaxy,” J. Vac. Sci. Tech. B, vol. 14, pp.2147-2150, 1996. [3.3]W. Gilmore III, D. Aspnes, “Performance Capabilities of Reflectometers and Ellipsometers for Compositional Analysis during AlxGa1-xAs Epitaxy,” Appl. Phys. Lett., vol. 66, pp.1617-1619, 1995. [3.4]C. Kuo, M Boonzaayer, D. Schreder, G. Maracas, B. Jons, “Real Time in-situ Thickness Control of Fabry-Perot Cavities in MBE by Wavelength Ellipsometry,” Ninth International Conference on Molecular Beam Epitaxy, Malibu, Ca., 1996. [3.5]W. Breiland, K. Kileen, “A Virtual Interface Method for Extracting Growth Rates and High Temperature Optical Constants from Thin Semiconductor Films using in situ Normal Incidence Reflectance,” J. Appl. Phys., vol. 78, pp. 6726-6736, 1995. [3.6]G. Li, W. Yuen, K. Toh, L. Eng, S. Lim, C. Chang-Hasnain, “Accurate Molecular Beam Epitaxial growth of Vertical-Cavity Surface Emitting Laser Using Diode Laser Reflectometry,” IEEE Photonics Tech. Letters, vol. 7, pp. 971-973, 1995. [3.7]J. Harris, B. Joyce, P. Dobson, “Oscillations in the Surface Structure of Sn-Doped GaAs during Growth by MBE,” Surf. Sci., vol. 103, pp.L90-L96, 1981. [3.8]J. M. Hove, C. S. Lent, P. R. Pukite, and P. I. Cohen, “Damped oscillations in reflection high energy electron diffraction during GaAs MBE”, J. Vac. Sci. Technol. B, vol. 1, pp. 741-746, 1983. [3.9]Dieter K. Schroder, Semiconductor Material and Device Characterization (2nd, John Wiley and Sons, New York, 1998), chapter 8. [3.10]A.Y. Cho, in The Technology and Physics of Molecular Beam Epitaxy, edited by E. H. C. Parker, Plenum Press, New York, pp. 1-13, 1985. [3.11]Y. G. Chai, “Effect of accelerated growth rate (1–5 μm/h) on molecular beam epitaxial GaAs using Si as a dopant,” Appl. Phys. Lett., vol. 37, pp. 379-382, 1980. [3.12]M. Ilegems, “Beryllium doping and diffusion in molecular-beam epitaxy of GaAs and AlxGa1–xAs,” Journal of Applied Physics, vol. 48, pp. 1278-1287, 1977.
[4.1]D. Marcuse, “Reflection loss of laser mode from tilted end mirror,” J. Lightw. Technol., vol. 7, pp. 336-339, 1989. [4.2]H. P. Fan, “Photocurrent and Electroabsorption spectroscopy for Semiconductor Quantum Well structures,” Master thesis, Inst. of Electro-optical Engineering, SYSU, 2001. [4.3]A. Niwa, T. Ohtoshi, K. Uomi, and K. Nakahara, “Doping-type dependence of turn-on delay time in 1.3 m GaAsP-InP modulation-doped strained quantum-well lasers,” IEEE Photon. Technol. Lett., vol. 8, pp. 328- 330, 1996. [4.4]V. D. Kulakovskii, E. Lach, and A. Forchel, “Band-gap renormalization and band-filling effects in a homogeneous electron-hole plasma in In0.53Ga0.47As/InP single quantum wells,” Phys. Rev. B, vol. 40, pp. 8087-8090, 1989. [4.5]P. Bhattacharya, Semiconductor Optoelectronic Devices (2nd, Prentice-Hall, New Jersey, 1994), pp.175. [4.6](Website of nextnano3: http://www.wsi.tum.de/nextnano3/index.htm) [4.7]G. Park, O. B. Shchekin, and D. G. Deppe, “Temperature dependence of gain saturation in multilevel quantum dotlasers,” IEEE J. Quantum Electron., vol. 36, pp. 1065-1071, 2000. [4.8]E. Kapon, D.M. Hwang and R. Bhat, “Stimulated emission in semiconductor quantum wire heterostructures,” Phys. Rev. Lett. vol. 63, pp. 430-433, 1989. [4.9]U. Bockelmann, and G. Bastard, “Phonon scattering and energy relaxation in two-, one-, and zero-dimensional electron gases,” Phys. Rev. B, vol. 42, pp. 8947-8951, 1990. [4.10]R. Heitz, M. Veit, N. N. Ledentsov, A. Hoffman, D. Bimberg, V. M. Ustinov, P. S. Kop’ev, and Zh. I. Alferov, “Energy relaxation by multiphonon processes in InAs/GaAs quantum dots,” Phys. Rev. B, vol. 56, pp. 10435-10445, 1997.
[5.1]D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood and C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B, vol. 32 , pp. 1043-1060, 1985. [5.2]P. Bhattacharya, Semiconductor Optoelectronic Devices (2nd, Prentice-Hall, New Jersey, 1994), pp. 120-140. [5.3]C. H. Henry, R. A. Logan and K. A. Bertness, “Spectral dependence of the change in refractive index due
[6.1]L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol., vol. 13, no. 4, pp. 615-627, 1995. [6.2]D. G. Rabus, M. Hamacher, U. Troppenz, and H. Heidrich, “Optical filters based on ring resonators with integrated semiconductor optical amplifiers in GaInAsP-InP,” IEEE J. Sel. Topics Quantum Electron., vol. 8, pp. 1405-1411, 2002. [6.3]G. Lenz and C. K. Madsen, “General optical all-pass filter structures for dispersion control in WDM systems,” J. Lightwave Technol., vol. 17, pp. 1248-1254, 1999. [6.4]S. Suzuki, K. Oda, and Y. Hibino, “Integrated-optic double-ring resonators with a wide free spectral range of 100 GHz,” J. Lightwave Technol., vol. 13, pp. 1766-1770, 1995. [6.5]S. Matsuo, Y. Yoshikuni, T. Segawa, Y. Ohiso, and H. Okamoto, “A widely tunable optical filter using ladder-type structure,” IEEE Photon. Technol. Lett., vol. 15, pp. 1114-1116, 2003. [6.6]V. M. Menon, W. Tong, C. Li, F. Xia, I. Glesk, P. R. Prucnal, and S. R. Forrest, “All-optical wavelength conversion using a regrowth-free monolithically integrated Sagnac interferometer,” IEEE Photon. Technol. Lett., vol. 15, pp. 254-256, 2003. [6.7]M. G. Kane, I. Glesk, J. P. Sokoloff, and P. R. Prucnal, “Asymmetric optical loop mirror: analysis of an all-optical switch,” Appl. Opt., vol. 33, pp. 6833-6842, 1994. [6.8]D. B. Mortimore, “Fiber loop reflectors,” J. Lightwave Technol., vol. 6, pp. 1217-1224, 1988. [6.9]M. Bachmann, P. A. Besse, and H. Melchior, “Overlapping-image multimode interference couplers with a reduced number of self-images for uniform and nonuniform power splitting,” Appl. Opt., vol. 34, pp. 6898-6910, 1995. [6.10]J. Leuthold and C. H. Joyner, “Multimode interference couplers with tunable power splitting ratios,” J. Lightwave Technol., vol. 19, pp. 700-707, 2001. [6.11]P. A. Besse, E. Gini, M. Bachmann, and H. Melchior. “New 2x2 and 1x3 Multimode Interference Couplers with Free Selection of Power Splitting Ratios,” J. Lightwave Technol., vol. 14, pp. 2286-2293, 1996. [6.12]N. S. Lagali, M. R. Paiam, and R. I. MacDonald, “Theory of variable-ratio power splitters using multimode interference couplers,” IEEE Photonics Technol. Lett. vol. 11, pp. 665-667, 1999. [6.13]H. Ohe, H. Shimizu, and Y. Nakano, “InGaAlAs multiple-quantum-well optical phase modulators based on carrier depletion,” IEEE Photon. Technol. Lett., vol. 19, pp. 1816-1818, 2007. [6.14]Q. Lai, M. Bachmann, W. Hunziker, P. A. Besse, and H. Melchior, “Arbitrary ratio power splitters using angled silica on silicon multimode interference couplers,” Electron. Lett., vol. 32, pp. 1576-1577, 1996. [6.15]D. S. Levy, Y. M. Li, R. Scarmozzino, and R. M. Osgood Jr. “A multimode interference-based variable power splitter in GaAs-AlGaAs,” IEEE Photon. Technol. Lett., vol. 9, pp. 1373-1375, 1997. [6.16]T. Saida, A. Himeno, M. Okuno, A. Sugita, and K. Okamoto, “Silica-based 2x2 multimode interference coupler with arbitrary power splitting ratio,” Electron. Lett., vol. 35, pp. 2031-2033, 1999. [6.17]S. Y. Tseng, C. F. Hernandez, D. Owens, and B. Kippelen, “Variable splitting ratio 2×2 MMI couplers using multimode waveguide holograms,” Opt. Express, vol. 15, pp. 9015-9021, 2007. [6.18]David J. Y. Feng, P. Y. Chang, T. S. Lay, and T. Y. Chang, “Novel stepped-width design concept for compact multimode-interference couplers with low cross-coupling ratio,” IEEE Photon. Technol. Lett., vol. 19, pp. 224-226, 2007. [6.19]David J. Y. Feng, T. S. Lay, and T. Y. Chang, “Waveguide couplers with new power splitting ratios made possible by cascading of short multimode interference sections,” Opt. Express, vol. 15, pp. 1588-1593, 2007. [6.20]C. J. Kaalund and Z. Jin, “Novel multimode interference devices for low index contrast materials systems featuring deeply etched air trenches,” Opt. Commun., vol. 250, pp. 292-296, 2005. [6.21]A. S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure App. Opt., vol. 2, pp. 211-233, 1993. [6.22]S. Sudbo, “Improved formulation of the film mode matching method for mode field calculations in dielectric waveguides,” Pure App. Opt., vol. 3, pp. 381-388, 1994. [6.23]FimmProp, version 4.3, Photon Design, Oxford, U.K., 2004. [6.24]BeamPROP, version 5.1, RSoft Inc., NY, 2005. [6.25]R. M. Knox and P. P. Toulios, “Integrated circuits for millimiter through optical frequency range,” in Proc. Symp. Submillimiter Waves, J. Fox, Ed., New York,Mar./Apr. 1970, pp. 497-516. [6.26]M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in NxN multimode interference couplers including phase relations,” Appl. Opt., vol. 33, pp. 3950-3911, 1994.
[A1]W. A. Harrison, “Elementary theory of heterojunctions,” J. Vac. Sci. Technol., vol. 14, pp. 1016-1021, 1977. [A2]I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys., vol. 89, pp. 5815-5875, 2001. [A3]S. L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995). [A4]D. Olego, T. Y. Chang, E. Silberg, E. A. Caridi, and A. Pinczuk, “Compositional dependence of band-gap energy and conduction-band effective mass of In1-x-yGaxAlyAs lattice matched to InP,” Appl. Phys. Lett., vol. 41, pp. 476-478, 1982. [A5]X. H. Zhang, S. J. Chua, S. J. Xu, and W. J. Fan, “Band offsets at the InAlGaAs/InAlAs (001) heterostructures lattice matched to an InP substrate,” J. Appl. Phys., vol. 83, pp. 5852- 5854, 1998. [A6]J. Bohrer, A. Krost, and D. B. Bimnerg, “Composition dependence of band gap and type of lineup in In1-x-yGaxAlyAs/InP heterostructures,” Appl. Phys. Lett., vol. 63, pp.1918-1920, 1993.
[D1]W. Y. Choi, "MBE-Grown Long Wavelength InGaAlAs/InP Laser Diodes," Ph.D thesis, Dept. of Electrical Engineering and Computer Science., MIT, 1994.
[E1]T. L. Koch and U. Koren, “Semiconductor Photonic Integrated Circuits,” IEEE J. Quantum Electron., vol. 27, pp. 641- 653, 1991. [E2]E. J. Skogen, J. S. Barton, S. P. Denbaars and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Sel. Topics. Quantum Electron., vol. 8, pp. 863- 869, 2002. [E3]V. Jayaraman, Z. Chuang, and L. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron., vol. 29, pp. 1824–1834, June 1993. [E4]H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, and Y. Yoshikuni, “Quasicontinuous wavelength tuning in super-structure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron., vol. 32, pp. 433–441, Mar. 1996. [E5]I. Avrutsky, D. Ellis, A. Tager, H. Anis, and J. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG’s),” IEEE J. Quantum Electron., vol. 34, pp. 729–741, Apr. 1998. [E6]N. Holonyak, Jr., “Impurity-induced layer disordering of quantum-well heterostructures: Discovery and prospects,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 584–594, July-Aug. 1998. [E7]S. K. Si, D. H. Yeo, K. H. Yoon, and S. J. Kim, “Area selectivity of InGaAsP–InP multiquantum–well intermixing by impurity-free vacancy diffusion,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 619–623, July-Aug. 1998. [E8]A. McKee, C. McLean, G. Lullo, A. Bryce, R. De La Rue, J. Marsh, and C. Button, “Monolithic integration in InGaAs–InGaAsP multiple-quantum-well structures using laser intermixing,” IEEE J. Quantum Electron., vol. 33, pp. 45–55, Jan. 1997. [E9]S. Charbonneau, E. Kotels, P. Poole, J. He, G. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. Goldberg, P. Piva, and I. Mitchell, “Photonic integrated circuits fabricated using ion implantation,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 772–793, July-Aug. 1998. [E10]D. Deppe and N. Holonyak, Jr., “Atom diffusion and impurity-induced layer disordering in quantum well III–V semiconductor heterostructures,” J. Appl. Phys., vol. 64, pp. 93–113, 1988. [E11]B. Qui, A. Bryce, R. De La Rue, and J. Marsh, “Monolithic integration in InGaAs–InGaAsP multiquantum-well structure using laser processing,” IEEE Photon. Technol. Lett., vol. 10, pp. 769–771, June 1998. [E12]S. McDougall, O. Kowalski, C. Hamilton, F. Camacho, B. Qiu, M. Ke, R. De La Rue, A. Bryce, and J. Marsh, “Monolithic integration via a universal damage enhanced quantum-well intermixing technique,” IEEE J. Select. Topics Quantum Electron., vol. 4, pp. 636–646, July-Aug. 1998. [E13]M. Paquette, J. Beauvais, J. Beerens, P. Poole, S. Charbonneau, C. Miner, and C. Blaauw, “Blueshifting of InGaAsP/InP laser diodes by low-energy ion implantation,” Appl. Phys. Lett., vol. 71, pp. 3749–3751, 1997.
|