(18.206.177.17) 您好!臺灣時間:2021/04/23 03:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:曾華瑋
研究生(外文):Hua-wei Tseng
論文名稱:全共軛硬桿式高分子薄膜厚度對其發光二極體電致光效應的影響
論文名稱(外文):Effects of Layer Thickness on Electroluminescence of Fully Conjugated Rigid-rod Polymer Light Emitting Diodes
指導教授:白世榮
指導教授(外文):S. J. Bai
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:全共軛硬桿式高分子高分子發光二極體薄膜厚度
外文關鍵詞:Fully conjugated rigid-rod polymerLayer thicknessPolymer light emitting diode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:82
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以poly-p-phenylenebenzobisoxazole (PBO)的雜環芳香族全共軛硬桿式高分子作為主要的光電作用層,並加入導電性高分子材料poly(3,4-ethylene-dioxythiophene): poly(4-styrenesulfonic acid) (PEDOT:PSS)做為電洞傳輸層,陰極及陽極分別為鋁(Al)及氧化銦錫(indium tin oxide,ITO),來製作高分子發光二極體,形成ITO/PEDOT:PSS/PBO/Al雙層結構,以進行電性和光性的量測。
實驗證明,當PBO膜厚遞減從90 nm到27 nm,造成能帶彎曲時,電子較易穿遂輸入,進而與電洞結合,促使高分子發光二極體電流密度提升及界限電壓(threshold voltage)下降。在電致光光譜的部分,發現當塗佈轉速遞減時,PBO分子聚集(aggregation)的現象程度高,鏈段間的吸引力增加,使得光譜產生紅位移的現象;且隨著PBO膜厚之改變,發光二極體元件的光學厚度(optical thickness)會有所調整,可利用微共振腔(micro-cavity)效應來調整電致光光譜。
另外,發現當PBO層為定值而PEDOT:PSS膜厚遞減從96 nm到17 nm時,元件電流密度稍有提升,界限電壓略為下降,可從微共振腔效應而得到不同的光色。
藉由微影製程,採用格柵式的光罩,加上強酸腐蝕,得到格柵式表面(grating surface)週期性厚度的氧化銦錫(ITO)玻璃,再塗佈上PEDOT:PSS,利用格柵高度的週期性結構,使得單一發光元件有不同的PEDOT:PSS膜厚分布,所得的ITO/PEDOT:PSS/PBO/Al雙層發光二極體元件展示較寬頻譜的電致光光譜。
A heterocyclic aromatic rigid-rod polymer poly-p-phenylene-benzobisoxazole (PBO) was applied as the opto-electronic layer;and a conducting material of poly(3,4-ethylenedioxythio-phene):poly(4-styrenesulfonic acid) (PEDOT: PSS) was used as the hole transport layer. Aluminum (Al) and indium tin oxide (ITO) were served as device cathode and anode,respectively, fabricated into a bi-layer structure of ITO/PEDOT:PSS/PBO/Al for electrical and luminescence responses.
This research demonstrated an increase of current density and a decrease of threshold voltage with a decrease of PBO layer thickness from 90 nm to 27 nm to facilitate electron tunneling and electron-hole recombination. With a lower spin coating speed, polymer chain would aggregate and inter-penetrate resulted in red-shift of electroluminescence (EL) emission spectrum. Furthermore, micro-cavity effect might influence EL spectrum by varying layer thickness. Modulation of PBO layer thickness led to tunable EL emission color.
It was also demonstrated that an increase of current density and a slightly decrease of threshold voltage with a PEDOT:PSS film thickness changing from 96 nm to 17 nm at a constant PBO layer thickness of 90 nm. Micro-cavity effect thus influenced EL emission for a tunable emission color.
Photolithography was applied to obtain ITO substrate of grating depth of periodic variation and then coated with a PEDOT:PSS leading to a grated PEDOT:PSS layer of periodic thickness. This led to ITO/PEDOT:PSS/PBO/Al device showing broadened EL emission spectra.
圖目錄 IV
表目錄 VIII
一、緒論 1
1-1 前言 1
1-2 研究動機 2
二、原理與實驗 3
2-1 發光二極體元件結構 3
2-1-1 單層結構 3
2-1-2 多層發光二極體結構 4
2-2 發光二極體元件材料 4
2-2-1 陽極(Anode) 4
2-2-2 陰極(Cathode) 5
2-2-3 PBX硬桿式共軛高分子 5
2-2-4 PEDOT:PSS電洞注入層 7
2-2-5 紫外光(UV)硬化型環氧樹脂 8
2-3 二極體原理 8
2-3-1 載子傳導機制 8
2-3-2 能帶理論(Energy Band Theory) 10
2-3-3 螢光理論(Luminescence Theory) 10
2-3-4 聚集現象(Aggregation Phenomenon ) 12
2-3-5 干涉效應(Interference effect) 13
2-3-6 微共振腔(Micro-cavity)效應 14
2-4 實驗設備 16
2-4-1 光罩對準機(Mask Aligner) 16
2-4-2 旋轉塗佈機(Spin Coater) 17
2-4-3 真空熱蒸鍍機(Vacuum Thermal Evaporator) 18
2-4-4 電性量測:Keithley® 2400之應用 19
2-4-5 電致光(Electroluminescence,EL)光譜量測 20
2-4-6 掃描式電子顯微鏡(Scanning Electron Microscope) 20
2-4-7 紫外光-可見光吸收光譜(UV-Vis Absorption Spectrum) 22
三、實驗內容 25
3-1 元件的製備 25
3-1-1 高分子溶液配製 25
3-1-2 清洗ITO玻璃 27
3-1-3 蝕刻玻璃基材上的ITO 28
3-1-4 旋轉塗佈製備薄膜 28
3-1-5 PBO薄膜熱處理 29
3-1-6 熱蒸鍍 29
3-1-7 元件封裝 29
3-2 元件量測 31
3-2-1 電性量測(I-V Curve) 31
3-2-2 電致光(EL)光譜 31
3-2-3 掃描式電子顯微鏡(Scanning Electron Microscope,SEM)量測 32
3-2-4 紫外光-可見光吸收光譜(UV-Vis Absorption Spectrum)量測 32
四、結果與討論 33
4-1 PBO薄膜厚度改變 33
4-2 PEDOT:PSS薄膜厚度改變 42
4-3 PEDOT:PSS薄膜塗佈於格柵式表面基材 48
五、結論 54
六、參考文獻 56
1. M. Pope, H. P. Kallmann, and P. Magnante, J. Chem. Phys., 38, 2042 (1963).
2.C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett., 51, 913 (1987).
3.J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Mackay, R. H. Friend, P. L. Burns, and A. B. Homes, Nature, 347, 539 (1990).
4.J. Shi and C. W. Tang, Appl. Phys. Lett., 70, 1665 (1997).
5.紀國鐘,鄭晃忠,「液晶顯示器技術手冊」,台灣電子材料與元件協會,台灣,2004。
6.L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000).
7.C. Kittel, "Introduction to Solid State Physics," 6th ed., John Wiley & Sons, Singapore (1986).
8.H. Y. Cheng, "Electrode Modifications of Molecular Light Emitting Diodes, " Master of Science Thesis, National Sun Yat-Sen University (Kaohsiung) (2003).
9.陳金鑫,黃孝文,「有機電激發光材料與元件」,五南圖書出版公司,台灣,2006。
10.Y. Shi, J. Liu, and Y. Yang, J. Appl. Phys., 87(9), 4254 (2000).
11.V. Cimrova and D. Neher, J. Appl. Phys., 79(6), 3299 (1996).
12.S. K. So, W. K. Choi, L. M. Leung, and K. Neyts, Appl. Phys. Lett., 74, 1939 (1999).
13.K. Neyts, B. Soenen, and W. Ooghe, J. of Luminescence, 65, 221, (1995).
14.S. E. Burns, N. C. Greenham, and R. H. Friend, Syn. Metals, 76, 205, (1996).
15.A. Dodabalapur, L. J. Rothberg, and T. M. Miller, Appl. Phys. Lett., 65, 2308 (1999).
16.S. Saito, T. Tsutsui, M. Era, N. Takada, C. Adachi, and T. Wakimoto, Proc. SPIE , 1910, 212 (1993).
17.A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, J. Appli. Phys., 80(12), 6954 (1996).
18. V. Bulovic, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R.
Forrest, Phys. Rev. B, 58, 3730 (1998).
19.C. C. Wu, "Luminescence of Light Emitting Diodes of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer," Ph.D. Thesis, National Sun Yat-Sen Univrsity (Kaohsiung) (2003).
20.http://cece2.ntust.edu.tw/ezcatfiles/cece2/homepage/10/color.htm (2007).
21.施敏,「半導體元件物理與製作技術」,國立交通大學出版社,台灣,2003。
22.D. Pavia, G. M. Lampman, and G. S. Kriz,"Introduction to Spectroscopy," Thomson Learning, Boston, 2003.
23.H. C. Liao, "Package of Homojunction of Fully Conjugated Heterocyclic Aromatic Rigid-rod Polymer Light Emitting Diodes " Master of Science Thesis, National Sun Yat-Sen Univrsity (Kaohsiung) (2004).
24.http://www.toyobo.co.jp/e/seihin/kc/pbo/technical.pdf (2004).
25.R. C. Kwong, M. R. Nugent, L. Michalski, T. Ngo, K. Rajan, Y. J. Tung, M. S. Weaver, T. X. Zhou, M. Hack, M. E. Thompson, S. R. Forrest, and J. J. Brown, Appl. Phys. Lett., 81, 162 (2002).
26.I. D. Parker, J. Appl. Phys., 75, 1656 (1993).
27.S. A. Jenekhe and J. A. Osaheni, Science, 265, 765 (1994).
28.Benjamin J. Schwartz, Annu. Rev. Phys. Chem, 54, 141 (2003).
29.K. Y. Peng, S. A. Chen, and W. S. Fann, J. Am. Chem. Soc., 123, 11388 (2001).
30.P. Vandersteegen, A. U. Nieto, C. V. Buggenhout, S. Verstuyft, P. Bienstman, P. Debackere, K. Neyts, and R. Baets, Proc. SPIE , 6486, 60860 (2007).
31.P. Bienstman, P. Vandersteegen, and R. Baets, Springer Sci, 39, 797 (2007).
32.P. Vandersteegen, S. Mladenovski, V. V. Elsbergen, G. Gartner, P. Bienstman, K. Neyts, and R. Baets, Proc. SPIE, 6655, 665513 (2007).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔