(3.238.174.50) 您好!臺灣時間:2021/04/18 17:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉朝嘉
研究生(外文):Chao-Chia Liu
論文名稱:以聚苯乙烯模版製備有序的中孔洞二氧化鋯材料和性質鑑定
論文名稱(外文):Polystyrene template synthesis and characterization of ordered mesoporous zirconia
指導教授:許子建許子建引用關係
指導教授(外文):Tzu-Chien Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:99
中文關鍵詞:聚苯乙烯模版二氧化鋯中孔洞
外文關鍵詞:Polystyrene templatezirconiamesoporous
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
二氧化鋯本身是一個寬能隙的過度金屬氧化物,因此具有許多良好的性質,本實驗研究在苯乙烯單體╱過硫酸鉀╱水系統中,在未添加任何交聯劑下,利用無乳化劑乳化聚合成100 nm以下聚苯乙烯球,藉此控制聚苯乙烯球大小。利用重力沉降法排列聚苯乙烯模板,利用浸泡二氧化鋯sol溶液,經鍛燒移除不同尺寸模板,製造不同孔洞尺寸且有序的中孔洞二氧化鋯材料,藉著儀器鑑定其性質。利用浸泡硝酸銀在二氧化鋯孔洞方法,摻雜銀在二氧化鋯孔洞上。SEM觀察微觀結構發現,當固定起始劑對苯乙烯單體重量比在5.98%,隨著苯乙烯濃度降低,聚苯乙烯球尺寸變小,當聚苯乙烯單體/水體積比降到0.05%,可合成66 nm聚苯乙烯球。重力沈降法用水/乙醇重量比在3:7排列,聚苯乙烯球沉降速度變慢,可排列成六方最密堆積模板。溫度控制在5oC下合成二氧化鋯sol溶液,降低sol-gel反應速度,進而浸泡模板,移除模板時孔洞表面不會有顆粒聚集。當移除聚苯乙烯模板時,會導致縮收率產生,近而形成二氧化鋯孔洞,聚苯乙烯球尺寸從80 nm~350 nm,收縮率在60%~80%之間。X-ray分析500oC鍛燒移除不同尺寸聚苯乙烯模板,所形成不同尺寸二氧化鋯孔洞(Z-1~Z-5) 結晶結構,結晶結構不隨著孔洞變小而改變,都是呈現正方晶相結構。BET測量Z-1~Z-5比表面積,比表面積的值從6.05 m2/g上升至42.61 m2/g,因為孔洞變小值變大,但當孔洞較少時,比表面積的值下降至10.85 m2/g。摻雜銀的過程中通入氮氣,會導致孔洞表面有顆粒聚集,而隨著硝酸銀濃度越高,聚集顆粒越多;改通入氫氣,會使在鍛燒的過程中,硝酸銀還原成銀,進而順利的摻雜銀到二氧化鋯孔洞(Z-2),且無顆粒聚集在孔洞壁上,EDS mapping分析結果顯示,銀呈現無規則的分佈在孔洞上;X-ray分析摻雜銀後結晶結構,結果呈現正方晶相結構,表示摻雜銀並不會影響原有的結晶結構。
The zirconia is one of the transition metal oxides with a wide band-gap, showing many good mechanical and physical properties. This study concentrates on the preparation of the polystyrene template and the characterization of the ordered mesoporous zirconia thus prepared. The polystyrene (PS) templates have been prepared by the emulsifier-free emulsion polymerization of styrene monomer (SM) in mixed solution of K2S2O8 and H2O, without any cross-linking agent. The PS spheres so prepared have diameters ranging from 50 – 400 nm. These spheres are then arranged in array by sedimentation method; then the infiltration of
zirconia sol solution is followed. After the sol has been transformed to the gel, calcinations under high temperature are proceeded to remove the PS template to obtain the ordered mesoporous zirconia with various pore sizes. Doping of the zirconia also is conducted by applying an AgNO3 solution to the mesoporous zirconia. Results from SEM indicate that with a fixed ratio of K2S2O8/styrene = 5.98 wt%, the PS size decreases with the SM concentration; PS as small as 66 nm can be obtained when SM/H2O = 0.05% by volume. The PS spheres forms a hexagonal close packing when using a solution of H2O/ethanol = 3:7 by wt during sedimentation. Shrinkage ranging from 60 – 80% of the original PS size happens when the PS template is removed from the calcined zirconia. Results from XRD indicate the same tetragonal crystalline structure of zirconia after calcinations at 500oC, regardless of the different pore sizes.
BET measurements show the specific surface area of the zirconia from 6.05 - 42.61m2/g. For Ag-doped zirconia under hydrogen atmosphere, it is found from EDS mapping that the AgNO3 can be reduced to the metallic silver without particles aggregation but random distribution on the pore walls or surfaces, while the tetragonal crystalline structure of zirconia remains unaltered.
摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vii
第一章 前言 1
1.1 簡介 1
1.2 中孔洞材料(mesoporous materials) 2
1.3 重力沉降法(gravity sedimentation)排列聚苯乙烯模板 4
1.4 溶凝膠方法(sol-gel processing)的原理 4
1.5 二氧化鋯 6
1.6 研究動機 7
第二章 文獻回顧 9
2.1聚苯乙烯球 9
2.1.1 乳化劑乳化聚合(emulsion polymerization) 9
2.1.2 無乳化劑乳化聚合(emulsifier-free emulsion polymerization) 13
2.1.3 單一尺寸聚苯乙烯球模板 18
2.2 二氧化鋯 22
2.2.1 巨孔洞二氧化鋯 23
2.2.2 中孔洞二氧化鋯 26
2.2.3 二氧化鋯孔洞的摻雜 27
2.3 銀的摻雜 28
第三章 實驗方法 30
3.1 實驗流程 30
3.2 化學藥品 31
3.3 合成方法 32
3.3.1 合成單一尺寸聚苯乙烯球 32
3.3.2 以重力沉降法排列聚苯乙烯球模板 34
3.3.3 利用溶膠凝膠法製備二氧化鋯sol solution 35
3.3.4 浸泡聚苯乙烯模板於二氧化鋯sol溶液經煅燒形成二氧化鋯孔洞材料 37
3.3.5 摻雜銀於二氧化鋯孔洞 38
3.4儀器 39
第四章 結果 41
4.1 以非乳化劑乳化聚合製造單一尺寸的聚苯乙烯球 41
4.2 以重力沉降法來排列單一尺寸聚苯乙烯模板 46
4.3 藉著溶膠凝膠法經由燒結製造有序的中孔洞二氧化鋯材料 48
4.3.1 二氧化鋯sol溶液反應溫度對二氧化鋯孔洞的影響 48
4.4.2 聚苯乙烯模板浸泡於二氧化鋯sol溶液的次數對孔洞的影響 50
4.3.3 聚苯乙烯球尺寸對浸泡次數的影響 51
4.3.4 聚苯乙烯球尺寸對孔洞大小影響 56
4.3.5 藉著BET比表面積的鑑定 57
4.3.6 在500oC下移除聚苯乙烯模板,所形成二氧化鋯晶體結構分析 61
4.4 摻雜Ag於二氧化鋯孔洞材料中 62
4.4.1 濃度效應 62
4.4.2 氣體效應 68
4.4.3 摻雜銀結晶結構變化 70
第五章 討論 72
5.1 藉著不同styrene和水比例來控制聚苯乙烯球大小 72
5.2 水和酒精比例對聚苯乙烯球排列的影響 73
5.3 二氧化鋯sol溶液反應溫度對二氧化鋯孔洞的影響 74
5.4 聚苯乙烯球尺寸對浸泡次數的影響 74
5.5 不同二氧化鋯孔洞對比表面積的影響 75
5.6 通入氣體和濃度對銀摻雜在二氧化鋯孔洞的影響 75
第六章 結論 77
參考文獻 79
附錄 87
[1] A. Towata, M. Sivakimar, K. Yasui, T. Tuziuti, T. Kozuka, Y. Iida, Ultrason. Sonochem., 14, 705 (2007).
[2] Z. Liu, Z. Jin, W. Li, X. Liu, J. Sol-Gel Sci. Technol., 40, 25 (2006).
[3] Y. Xia, B. Gates, Y. Yin, Y. Lu, Adv. Mater., 10, 693 (2000).
[4] F. Martin, M. C. Lopez, P. Carrera, J. R. Ramos-Barrado, D. Leinen, Surf. Interface Anal., 36, 8 (2004).
[5] S. M. Chang, R. A. Doong, Thin Solid Films., 489, 17 (2005).
[6] J. P. Hoogenboom, D. Derks, P. Vergeer, A. Blaaderen, J. Chem. Phys., 117, 11320 (2002).
[7] P. Behrens, Adv. Mater., 5, 127 (1993).
[8] Y. W. Chung, I. C. Leu, J.H. Lee, M.H. Hon, Colloids Surf., A, 290, 256 (2006).
[9] C. J. Brink, W. Scherer, “The Physics and Chemistry of Sol-Gel processing,”Harcourt Brace Jovanovich Publishers, San Diego, 1990.
[10] L. C. Klein,“Sol-Gel Optics Processing and Applications”Kluwer Academic PuBlishers, Boston.
[11] P. E. Marti, M. Maciejewski, A. Baiker, J. Catal., 139, 494 (1993).
[12] Z. Dang, B. G. Anderson, Y. Amenomiya, B. A. Morrow, J. Phys. Chem., 99, 14437 (1995).
[13] R. L. Varma, N. N. Bakhshi, J. F. Mathews, S. H. Ng, Ind. Eng. Chem. Res., 26, 183 (1987).
[14] X. Liu, D. Cui, Q. Wang, Y. Li, Y. Guo, Mater. Chem. Phys, 105, 208 (2007).
[15] R. Valero, B. Durand, J.L. Guth, T. Chopin, Microporous Mesoporous Mater., 29, 311(1999).
[16] Z. Liu, Z. Jin, W. Li, J. Qiu, J. Zhao, X. Liu, Appl. Surf. Sci, 252. 5002 (2006).
[17] W. C. Preston, J. Phys. Chem., 52, 84 (1948).
[18] R. M. Fitch, M. B. Prenosil, K. J. Sprick, J. polym. Sci., 27, 95 (1969).
[19] W. D. Harkins, J. Am. Chem. Soc., 69, 1428 (1947).
[20] F. K. Hansen, J. Ugelstad, J. Polym. Sci ., 16, 1953 (1978).
[21] M. R. Grancio, D. J. Wilkinson, A. R. Goodall, M. Chainey, J. polym. Sci., Polym. Chem. Ed., 23, 1869 (1985).
[22] P. Keusch, P. J. Williams, J. Polym. Chem. Ed., 11, 143 (1973).
[23] T. Matsumoto, A. Ochi, Kobunshi Kagaku, 22, 481 (1965)
[24] A. R. Goodall, M. C. Wilkinson, J. Hearn, J. Polym. Sci., Part A: Polym. Chem., 15, 2193 (1977).
[25] M. Arai, K. Arai, S. Saito, J Polym Sci Polym Chem., 17, 3655 (1979).
[26] M. Arai, K. Arai, S. Saito, J Polym Sci., 18, 2811 (1980).
[27] D. Munro, A. R. Goodall, M. C. Wilkison, K. Randle, J. Hearn, J Colloid Surf Sci., 68(1), 1 (1979).
[28] L. J. Lui, I. M. Krieger, J Polym Sci Polym Chem., 19, 3031 (1981).
[29] G. W. Ceska, J. Appl. Polym. Sci., 18, 427 (1974).
[30] A. R. Mahdavian, M. Abdollahi, Polym., 45, 3233 (2004).
[31] M. S. Juang, I. M. Krieger, J polym. Sci., polym. Chem. Ed., 14, 2089 (1976).
[32] A. Kotera, K. Furusawa, K. Kudo, Kolloid-Z. Z. Polym., 240, 837 (1970).
[33] A. Kotera, K. Suzuki, T. Saito, H. Matsuda, T. Kamata, Y. Hashino, Bull. Chem. Soc. Jpn., 39, 1192 (1966).
[34] J. W. Goodwin, J. Hearn, C. C. Ho, R. H. Ottewill, Colloid. Polym. Sci., 252, 461 (1974).
[35] J. W. Goodwin, R. H. Ottewill, R. Pelton, Prog. Colloid polym. Sci., 257, 61 (1979).
[36] V. Smigol, F. Svec, K. Hosoya, Q. Wang, J. M. Frechet, Angew. Makromol. Chem., 195, 151 (1992).
[37] Y. Ohtsuka, H. Kawaguchi, Y. Sugi, J. Apply. Polym. Sci., 26, 1637 (1981).
[38] S. A. Chen, H. S. Chang, J. Polym. Sci., Polym. Chem. Ed., 28, 2547 (1990).
[39] E. Zurkova, K. Bouchal, D. Zdenkova, Z. Pelzbauer, F. Svec, J. Kalal, J. polym. Sci., Polym. Chem. Ed., 21, 2949 (1983).
[40] R. H. Ottewill, J. N. Shaw, Kolloid-Z. Z. polym., 215, 161 (1966)
[41] R. M. Fitch, Br. Polym. J.,5 467 (1973).
[42] R. M. Fitch, L. B. Shih, Prog. Colloid Polymer. Sci., 56, 1 (1975)
[43] A. R. Goodall, M. C. Wilkinson, J. Hearn, J. Polym. Sci., Part A: Polym. Chem, 15, 2193 (1977).
[44] R. A. Cox, M. C. Wilkinson, J. M. Creasey, A. R. Goodall, J. Hearn, J. Polym. Sci., Part A: Polym. Chem, 15, 2311 (1977).
[45] F. K. Hansen, J. Ugelstad, J. Polym. Sci., Part A: Polym. Chem., 17, 3033 (1979).
[46] B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater., 11, 795 (1999).
[47] Z. Liu, Z. Jin, X. Liu, J. Sol-Gel Sci. Techn., 40, 25 (2006).
[48] Z. Liu, J. Ya, Y. Xin, J. Ma, C. Zhou, J. Cryst. Growth., 297, 223 (2006).
[49] P. Wang, D. Chen, F. Q. Tang, Langmuir., 22, 4832 (2006).
[50] E. Geraud, V. Prevot, F. Leroux, J. Phys.Chem.Solids, 67, 903 (2006).
[51] D. Chen, J. Liu, P. Wang, L. Zhang, J. Ren, F. Tang, W. Wu, Colloids Surf., A, 302, 461 (2007).
[52] J. J. Cai, R. Salovey, Polym. Eng. Sci., 39, 1696 (1999).
[53] C. E. Reese, C. D. Guerrero, J. M. Weissman, K. Lee, S. A. Asher, J. Colloid Interface Sci., 232, 76 (2000).
[54] S. Vaudreuil, M. Bousmina, Serge Kaliaguine, L. Bonneviot, Adv. Mater., 13, 1310 (2001).
[55] Y. Kim, C. Kim, J. Yi, Mater. Res. Bull., 39, 2103 (2004).
[56] S. B. Brijmohan, S. Swier, R. A. Weiss, M. T. Shaw, Ind. Eng. Chem. Res., 44, 8039 (2005).
[57] C. C. Chang, S. K. Yen, Surf. Caot. Technol., 182, 242 (2004).
[58] T. I. Politova, J. T. S. Irvine, Solid State Ionics., 168, 153 (2004).
[59] M. De, D. Kunzru, Catal. Lett., 96, 33 (2004).
[60] T. Jin, T. Yamaguchi, K. Tanabe, J. Phys. Chem., 90, 4794 (1986).
[61] A. J. Grau, J. C. Yori, C. R. Vera, F. C. Lovey, A. A. Condo, J. A. Parera, Appl. Catal. A-Gen., 265, 141 (2004).
[62] G. Xu, Y. W. Zhang, C. S. Liao, C. H. Yan, Solid State Ionics, 166, 391 (2004).
[63] H. Yan, C. F. Blanford, J. C. Lytle, C. B. Carter, W. H. Smyrl, A. Stein, Chem. Mater., 13, 4314 (2001).
[64] K. M. Kulinowski, P. Jiang, H. Vaswani, V. L. Colivin, Adv. Mater., 12, 833 (2000).
[65] Q. D. Velev, E. W. Kaler, Adv. Mater, 12, 531 (2000).
[66] K. Sumioka, H. Kayashima, T. Tsutsui, Adv. Mater, 14, 1284 (2002).
[67] Q. Z. Wu, Y. Shen, J. F. Liao, Y. G. Li, Mater. Lett, 58, 2688 (2004).
[68] D. Wang, F. Caruso, Adv. Mater., 13, 350 (2001).
[69] P. N. Bartlentt, P. R. Birkin, M. A. Ghanem, C. S. Toh, J. Mater. Chem., 11, 849 (2001).
[70] M. A. AI-Daous, A. Stein, Chem. Mater., 15, 2638 (2003).
[71] B. T. Holland, C. F. Blanford, A. Stein, Science., 281, 538 (1998).
[72] B. T. Holland, C. F. Blanford, T. Do, A. Stein, Chem. Mater., 11, 795 (1999).
[73] F. Q. Tang, T. Uchikoshi, Y. Sakka, Mater. Res. Bull., 41, 268 (2006).
[74] Y. Jia, C. Duran, Y. Hotta, K. Sato, K. Watari, J. Colloid interface Sci., 291, 292 (2005).
[75] S. LI, J. Zheng, W. Yang, Y. Zhao, Materials letters., 61, 4784 (2007).
[76] G. Larsen, E. Lotero, M. Nabity, L. M. Petkovic, D. S. Shobe, J. Catal., 164, 246 (1996).
[77] Neeraj, C. N. R. Rao, J. Mater. Chem.,8, 1631 (1998).
[78] A. Kim, P. Bruinsma, Y. Chen, L. Q. Wang, J. Liu, J. Chem. Soc. Chem. Commun., 161 (1997).
[79] M. J. Hudson, J. A. Knowles, J. Chem. Soc. Chem. Commun., 2083 (1995).
[80] J. M. Kim, C. H. Shim, R. Ryoo, Catal. Today, 38, 221 (1997).
[81] E. Zhao, S. E. Hardcastle, G. Pacheco, A. Garcia, A. L. Blumenfeld, J. J. Fripiat, Microporous Mesoporous Mater., 31, 9 (1999).
[82] M. Mamak, N. Coombs, G. Ozin, Adv. Mater., 12, 198 (2000).
[83] T. Masui, Y. Peng, K. Machida, G. Adachi, Chem. Mater., 10, 4005 (1998).
[84] H. R. Chen, J. L. Shi, T. D. Chen, D. S. Yan, Mater. Letter., 54, 200 (2002).
[85] H. R. Chen, J. L. Shi, J. Yu, L. Z. Wang, D. S. Yan, Microporous Mesoporous Mater., 39, 171 (2000).
[86] H. Ma, Y. Kong, W. Hou, Q. Yan, Microporous Mesoporous Mater., 77, 241 (2005).
[87] X. Liu, D. Cui, Q. wang, Y. Li, Y. Guo, Mater. Chem. Phys, 105, 208 (2007).
[88] A. Wokaun, J. Weigel, M. Kilo, A. Baiker, Fresenius. J. Anal. Chem., 349, 71 (1994).
[89] W. H. Tuan, W. B. Chou, J. Eur. Ceram. Soc., 16, 583 (1996).
[90] X. An, G. Meng, M. Zhang, Y. Tian, S. Sun, L. Zhang, Mater. Letter., 60, 2586 (2006).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔