跳到主要內容

臺灣博碩士論文加值系統

(44.212.99.208) 您好!臺灣時間:2024/04/17 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃俊傑
研究生(外文):Jun-Jie Huang
論文名稱:鈦於水中之雷射剝蝕氧化凝聚
論文名稱(外文):Condensation and oxidation of laser ablation of titanium under water
指導教授:沈博彥沈博彥引用關係
指導教授(外文):Shen, Pouyan
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:81
中文關鍵詞:液體限制雷射剝蝕熱影響區相變化
外文關鍵詞:liquid-confinementlaser ablationHAZcondensation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:340
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗為在水溶液環境下,利用奈秒(nanosecond)脈衝雷射以不同能量密度單一脈衝剝蝕純鈦靶材,研究經剝蝕產生的孔洞與熱影響區(heat affected zone, HAZ)的大小及其微結構,並與在大氣以及真空環境下之雷射剝蝕做比較,由結果發現環境對穿孔能力之影響趨勢為水>大氣>真空,而環境對熱影響區的趨勢為真空>大氣>水,且隨能量密度昇高,熱影響區就越大。在微結構方面,藉由電子繞射所得之晶格常數代入Birch-Murnaghan方程式可以得到孔洞與熱影響區之殘留應力,發現在熱影響區的殘留應力最大,且在熱影響區下方3μm處的殘留應力比表面的的殘留應力還要大,此外,在孔洞與熱影響區界面發現有Ti6O以及Ti3O的晶粒存在,應是在水中雷射剝蝕靶材時,在表面有限深度下造成不完全氧化的結果。

另外,在水中利用微秒(microsecond)脈衝雷射以不同能量密度下剝蝕鈦靶約20分鐘,研究在水中所生成的TiO與TiO2奈米顆粒,由實驗結果可知在水中所合成的奈米凝聚物之尺寸範圍落在5∼50nm,而平均粒徑為17∼24nm,且隨雷射剝蝕能量增加而增加,由於液體限制(liquid-confinement)的效應,使得在液體環境下所合成的奈米凝聚物之粒徑尺寸較為一致,大部分粒徑較小的凝聚物為非晶,且其形狀有球形也有不規則形,而少部分粒徑較大之凝聚物大多為晶體,且其形狀為球形。此外,在液體中所誘發之電漿,其奈米凝聚顆粒於急熱/急冷、奈米效應、高密度結晶平面及殘留應力之綜合效應,導致我們合成出大量且顆粒較小之非晶TiO2與結晶TiO凝聚物,和少量顆粒較大結晶且具高密度之TiO2凝聚物,由凝聚物之晶格影像,發現α-PbO2態與金紅石態(rutile)之TiO2共存,而且依循的晶向關係為(0-21)α//(0-11)r;[212]α//[111]r。
圖目錄 III
表目錄 VII
一、 前言 1
二、 文獻回顧 3
2.1 雷射加工原理 3
2.2 PLA之剝蝕微觀機制 4
2.3 TiO2之結構與應用 6
2.4 PLAL之歷史 8
2.5 PLAL之成核、生長機制 10
2.6 PLAL之熱力學與動力學 11
三、 實驗步驟與方法 16
3.1 第一部份:靶材孔洞 16
3.1.1 準備靶材 16
3.1.2 雷射剝蝕 16
3.1.3 偏光顯微鏡觀察 16
3.1.4 掃瞄式電子顯微鏡(SEM)觀察 17
3.1.5 穿透式電子顯微鏡(TEM)觀察 17
3.2 第二部份:凝聚物 17
3.2.1 準備靶材 17
3.2.2 雷射剝蝕 17
3.2.3 偏光顯微鏡觀察 18
3.2.4 掃瞄式電子顯微鏡觀察 18
3.2.5 穿透式電子顯微鏡觀察 18
四、 實驗結果 20
4.1 第一部份:靶材孔洞 20
4.1.1 偏光顯微鏡觀察 20
4.1.2 掃瞄式電子顯微鏡觀察 20
4.1.3 穿透式電子顯微鏡觀察 21
4.2 第二部份:凝聚物 21
4.2.1 偏光顯微鏡觀察 21
4.2.2 掃瞄式電子顯微鏡觀察 22
4.2.3 穿透式電子顯微鏡觀察 22
五、 討論 24
5.1 環境與能量條件對雷射剝蝕所形成孔洞與熱影響區之影響 24
5.2 孔洞殘留應力之探討 25
5.3 雷射參數對 PLAL所合成奈米凝聚物之尺寸及形狀之影響 25
5.4 非晶與結晶之TiO及TiO2奈米凝聚物形成機制 27
5.5 α-PbO2態與金紅石態TiO2之晶向關係和相變化 28
六、 結論 30
七、 參考文獻 31
1、J. D. Majumdar and I. Manna, “Laser processing of materials” Sadhana, 28 (2003) 495-562.
2、D. B. Chrisey and G. K. Hubler, “Pulsed Laser Deposition of Thin Films” (Wiley, New York, 1994), p. 613.
3、L. V. Zhigilei and B. J. Garrison, “Microscopic mechanisms of laser ablation of organic solids in the thermal and stress confinement irradiation regimes” J. Appl. Phys., 88 (2000) 1281-1298.
4、L. V. Zhigilei, E. Leveugle, B. J. Garrison, Y. G. Yingling and M. I. Zeifman, “Computer Simulations of Laser Ablation of Molecular Substrates” Chem. Rev., 103 (2003) 321-347.
5、B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben and A. TÜnnerman, “Femtosecond, picosecond and nanosecond laser ablation of solids” Appl. Phys. A, 63 (1996) 109-115.
6、M. Von Allmen and A. Blatter, “Laser-Beam Interactions with Materials” (Springer, 1994), p. 194.
7、B. G. Hyde and S. Andersson, “Inorganic Crystal Structures” (Wiley, New York, 1989), p. 14 and pp. 69-70.
8、L. Gerward and J. S. Olsen, “Post-Rutile High-Pressure Phases in TiO2” J. Appl. Crystallogr. 30 (1997) 259-264.
9、J. S. Olsen, L. Gerward and J.Z. Jiang, “On the rutile/α-PbO2-type phase boundary of TiO2” J. Phys. Chem. Solids, 60 (1999) 229-233.
10、L. S. Dubrovinsky, N. A. Dubrovinskaia, V. Swamy, J. Muscat, M. Harrison, R. Ahuja, B. Holm and B. Johansson, “The hardest known oxide” Nature, 410 (2001) 653-654.
11、N. A. Dubrovinskaia, L. S. Dubrovinsky, V. B. Prokopenko, R. Ahuja and V. Dmitrev, “Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph” Phys. Rev. Lett., 87 (2001) 275501.
12、S. L. Hwang, P. Shen, H. T. Chu and T. F. Yui, “Nanometer-Size α-PbO2-Type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism” Science, 288 (2000) 321-324.
13、A. El Goresy, L. S. Dubrovinsky, P. Gillet and G. Graup, “An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater” Science, 293 (2001) 1467-1470.
14、A. El Goresy, M. Chen, P. Gillet, L Dubrovinsky, G. Graup, R. Ahuja, “A natural shock-induced dense polymorph of rutile with α-PbO2 structure in the suevite from the Ries crater in Germany” Earth and Planetary Science Letters, 192 (2001) 485-495.
15、K. Kusaba, M. Kikuchi, K. Fukuoka and Y. Syono, “Anisotropic phase transition of rutile under shock compression” Phys. Chem. Miner., 15 (1988) 238-245.
16、J. K. Dewhurst and J. E. Lowther, “High-pressure structural phases of titanium dioxide” Phys. Rev. B, 54 (1996) R3673-R3675.
17、M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis” Chem. Rev., 93 (1993) 341-357.
18、A. P. Alivisatos, “Biomineralization - Naturally aligned nanocrystals “ Science, 289 (2000) 736-737.
19、M. Mattesini, J. S. De Almeida, L. Dubrovinsky, N. Dubrovinskaia, B. Johansson and R. Ahuja, “Cubic TiO2 as a potential light absorber in solar-energy conversion” Phys. Rev. B, 70 (2004) 115101.
20、S. Samencik and R. E. Cavicchi, “The growth of thin, epitaxial SnO2 films for gas sensing applications” Thin Solid Films, 206 (1991) 81-87.
21、U. Selvaraj, A.V. Prasadaro, S. Komermani and R. Roy, “Sol–Gel Fabrication of Epitaxial and Oriented TiO2 Thin Films” J. Am. Ceram. Soc., 75 (1992) 1167-1170.
22、R. Takahashi, S. Takenaka, S. Sato, T. Sodesawa, K. Ogura and K. Nakanishi, “Structural study of mesoporous titania and titanium–stearic acid complex prepared from titanium alkoxide” J. Chem. Soc.-Faraday Trans., 94 (1998) 3161-3168.
23、L. J. Meng, C. P. Moreira and M. P. Santos, “Study of porosity of titanium oxide films by X-ray photoelectron spectroscopy and IR transmittance” Thin Solid Films, 239 (1994) 117-122.
24、S. Miyaki, K. Honda, T. Kohno, Y. Setsuhura, M. Satou and A. Chayahara, “Rutile-type TiO2 formation by ion beam dynamic mixing” J. Vac. Sci. Technol. A, 10 (1992) 3253-3259.
25、C. Miller and R. F. Hagland, Jr. ed. Laser Ablation and Deposition, Academic Press, New York (1998).
26、S. Li, S. J. Silvers and M. S. El-Shall, “Surface Oxidation and Luminescence Properties of Weblike Agglomeration of Silicon Nanocrystals Produced by a Laser Vaporization-Controlled Condensation Technique” J. Phys. Chem. B, 101 (1997) 1794-1802.
27、W. H. Lee and P. Shen, “On the coalescence and twinning of cubo-octahedral CeO2 condensates” J. Crystal Growth, 205 (1999) 169-176.
28、W. H. Lee and P. Shen, “Formation of Ceria-Partially Stabilized Zirconia Nanocrystals by Laser Evaporation-Condensation” Advanced Powder Technol., 10. No. 4 (1999) 383-397.
29、L. Y. Kuo and P. Shen, “On the condensation and preferred orientation of TiC nanocrystals — effects of electric field, substrate temperature and second phase” Mat. Sci. Eng. A, 276 (2000) 99-107.
30、L. Y. Kuo and P. Shen, “Shape dependent coalescence and preferred orientation of CeO2 nanocrystallites” Mat. Sci. Eng. A, 277 (2000) 258-265.
31、C. A. Melendres, A. Narayanasamy, V. A. Maroni and R. W. Siegel, “Raman spectroscopy of nanophase TiO2” J. Mater. Res., 4 (1989) 1246-1250.
32、T. Seto, M. Shimada and K. Okuyama, “Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method” Aerosol Sci. Technol., 23 (1995) 183-200.
33、S. K. Friedlander, H. D. Jang and K. H. Ryu, “Elastic behavior of nanoparticle chain aggregates” Apply. Phys. Lett., 72 (1998) 173-175.
34、H. D. Jang and S. K. Friedlander, “Restructuring of Chain Aggregates of Titania Nanoparticles in the Gas Phase” Aerosol Sci. Technol., 29 (1998) 81-91.
35、K. Ogawa, T. Vogt, M. Ullmann, S. Johnson and S. K. Friedlander, “Elastic properties of nanoparticle chain aggregates of TiO2, Al2O3, and Fe2O3 generated by laser ablation” J. Apply. Phys., 87 (2000) 63-73.
36、T. Sasaki, C. Liang, W. T. Nichols, Y. Shimizu and N. Koshizaki, “Fabrication of oxide base nanostructures using pulsed laser ablation in aqueous solutions” Appl. Phys. A, 79 (2004) 1489-1492.
37、P. P. Patil, D. M. Phase, S. A. Kulkarni, S. V. Ghaisas, S. K. Kulkarni, S. M. Kanetkar and S. B. Ogale, “ Pulsed-laser–induced reactive quenching at liquid-solid interface: Aqueous oxidation of iron” Phys. Rev. Lett., 58 (1987) 238-241.
38、G. W. Yang, “Laser ablation in liquids: Applications in the synthesis of nanocrystals” Prog. Mater. Sci., 52 (2007) 648-698.
39、S. B. Ogale, P. P. Patil, D. M. Phase, Y. V. Bhandarkar, S. K. Kulkarni, Smita Kulkarni, S. V. Ghaisas and S. M. Kanetkar, “Synthesis of metastable phases via pulsed-laser-induced reactive quenching at liquid-solid interfaces” Phys. Rev. B, 36 (1987) 8237-8250.
40、S. B. Ogale, A. P. Malshe, S. M. Kanetkar and S. T. Kashirsagar, “Formation of diamond particulates by pulsed ruby laser irradiation of graphite immersed in benzene” Solid State Comm., 84 (1992) 371-373.
41、R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, “Physical study of laser-produced plasma in confined geometry” J. Appl. Phys., 68 (1990) 775-784.
42、O. Yavas, P. Lenderer, H. K. Park, C. P. Grigoropoulos, S. C. Poun and A. C. Tam, “Enhanced Acoustic Cavitation Following Laser-induced Bubble Formation: Long-Term Memory Effect” Phys. Rev. Lett., 72 (1994) 2021-2024.
43、T. Sakka, S. Lwanage, Y. H. Ogata, A. Matsu and T. Takemoto, “Laser ablation at solid–liquid interfaces: An approach from optical emission spectra” J. Chem. Phys., 112 (2000) 8645-8653.
44、G. W. Yang, J. B. Wang and Q. X. Liu, “Preparation of nano-crystalline diamonds using pulsed laser induced reactive quenching” J. Phys.-Condens Matter., 10 (1998) 7923-7927.
45、C. Liang, Y. Shimizu, T. Sasaki and N. Koshigaki, “Synthesis of Ultrafine SnO2-x Nanocrystals by Pulsed Laser-Induced Reactive Quenching in Liquid Medium” J. Phys. Chem. B, 107 (2003) 9220-9225.
46、H. Zeng, W. Cai, Y. Li, J. Hu and P. Liu, “Composition/Structural Evolution and Optical Properties of ZnO/Zn Nanoparticles by Laser Ablation in Liquid Media” J. Phys. Chem. B, 109 (2005) 18260-18266.
47、J. B. Wang, G. W. Yang, C. Y. Zhang, X. L. Zhong and Z. A. Ren, “Cubic-BN nanocrystals synthesis by pulsed laser induced liquid–solid interfacial reaction” Chem. Phys. Lett., 367 (2003) 10-14.
48、S. Zhu, Y. F. Lu, M. H. Hong and X. Y. Chen, “Laser ablation of solid substrates in water and ambient air” J. Appl. Phys., 89 (2001) 2400-2403.
49、D. Devaux, R. Fabbro, L. Tollier and E. Bartnicki, “Generation of shock waves by laser-induced plasma in confined geometry” J. Appl. Phys., 74 (1997) 2268-2273.
50、J. Tang and S. Endo, “P-T Boundary of α-PbO2 Type and Baddeleyite Type High-Pressure Phases of Titanium Dioxide” J. Am. Ceram. Soc., 76 (1993) 796-798.
51、M. Akaogi, J. Susaki, T. Yagi, K. Kusaba, T. Ato, M. Matsui and T. Kikegawa, in:Y. Syono (Ed.), Program and Abstracts of Papers presented at the 30th High-Pressure Conference of Japan, Japan Society of High Pressure Science and Technology, Kyoto, 1989, P.166 (in Japanese).
52、K. Saito, K. Takatani, T. Sakka and Y. H. Ogata, “Observation of the light emitting region produced by pulsed laser irradiation to a solid–liquid interface” Appl. Surf. Sci., 197-198 (2002) 56-60.
53、M. Y. Kuo, C. L. Chen, H. C. Yang, C. Y. Hua and P. Shen, “First-principles calculation of prevailing faces of α-PbO2-type TiO2” Phys. Rev. B, 71 (2005) 125405.
54、S. Y. Chen and P. Shen, “Laser Ablation Condensation of α-PbO2-Type TiO2” Phys. Rev. Let., 89 (2002) 096106.
55、S. Y. Chen and P. Shen, “Laser Ablation Condensation and Transformation of Baddeleyite-Type Related TiO2” Jpn. J. App. Phys., 43 (2004) 1519-1524.
56、C. X. Wang, P. Liu, H. Cui and G. W. Yang, “Nucleation and growth kinetics of nanocrystals formed upon pulsed-laser ablation in liquid” Appl. Phys. Lett., 87 (2005) 201913.
57、F. P. Bundy, W. A. Bassett, M. S. Weather, R. J. Hemley, H. K. Mao and A. F. Goncharov, “The pressure-temperature phase and transformation diagram for carbon; updated through 1994” Carbon, 34 (1996) 141-153.
58、J. Feder, K. C. Russel, J. Lothe and G. M. Pound, “Homogeneous nucleation and growth of droplets in vapours” Adv. Phys., 15 (1966) 111-178.
59、J. W. Martin and R. D. Doherty, Stability of microstructure in metallic systems (Cambridge Univ. Press, 1976), p. 298.
60、D. Errandonea, Y. Meng, M Somayazulu and D. Häusermann, “Pressure-induced α→ω transition in titanium metal: a systematic study of the effects of uniaxial stress” Physica B, 355 (2005) 116-125.
61、M. H. Tsai, S. Y. Chen and P. Shen, “Laser ablation condensation of TiO2 particles: Effects of laser energy, oxygen flow rate and phase transformation” J. Aero. Sci.,36 (2005) 13-25.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top