(3.234.221.162) 您好!臺灣時間:2021/04/14 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭全祐
研究生(外文):Cyuan-You Siao
論文名稱:鈦酸鋇與鈦酸鍶的界面反應研究
論文名稱(外文):An investigation of interface reaction between BaTiO3 and SrTiO3
指導教授:盧宏陽盧宏陽引用關係
指導教授(外文):Hong-Yang Lu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:105
中文關鍵詞:異相晶核-晶殼相互擴散
外文關鍵詞:Kirkendall porosityinterdiffusioncore-shellpolytitanate second phases
相關次數:
  • 被引用被引用:0
  • 點閱點閱:140
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鈦酸鋇(BaTiO3)摻雜鈦酸鍶(SrTiO3)研究中,因產生擴散性相變化(Diffuse Phase Transition)常廣為學者研究,本論文主觀察兩者相互擴散後,界面處的變化。在鈦酸鋇多晶表面灑上鈦酸鍶燒結後,發現Sr溶入鈦酸鋇極其緩慢,更進ㄧ步探討Sr溶入鈦酸鋇的擴散機制。
此外,在鈦酸鋇多晶與鈦酸鍶多晶疊層燒結後,發現於鈦酸鋇靠界面處長出很多別於兩者的晶粒,利用x-ray繞射儀證明其組成含有Ba4Ti13O30、Ba2Ti9O20、Ba6Ti17O40與BaTi2O5,由掃描式顯微鏡及energy dispersive spectrometer(EDS)成份分析,說明其為Ba與Sr之間相互擴散殘留下來的TiO2與原BaTiO3產生反應,在穿透式顯微鏡觀察上,分別於鈦酸鋇與鈦酸鍶固溶體層中觀察到擴散性相變化的主因晶核-晶殼結構,更於離界面100 μm處的鈦酸鋇中,看到因Ba擴散較Sr快而產生類似於Kirkendall pore的結構,統整實驗結果確定了這異相晶粒的形成與交互擴散機制。
The pseudo-binary system of BaTiO3-SrTiO3 ceramics offering potential applications in the electronic industry, particularly for the passive components, has been studied for its diffuse phase transition over the temperature range of +150oC and -50oC. This research concentrating on the interdiffusion between two sintered layers of such perovskite is a continuation of study, conducted by this author’s group over the past years. Two-layer BaTiO3-SrTiO3 stacks were sintered at 1300oC and annealed for various time periods to investigate if and how the interdiffusion occurs across the BaTiO3-SrTiO3 interface. Optical microscopy reveals an interface layer consisting of polytitanate second phases, which appear to be large, chunky grains initially. Both results obtained from X-ray diffractometry and micro-chemical analysis using the energy-dispersive spectrometry, equipped with the scanning electron microscopy, suggest that the second phases are: Ba4Ti13O30, Ba2Ti9O20, Ba6Ti17O40 and BaTi2O5. These polytitanates are produced from the solid-state reaction between BaTiO3 and TiO2, which is left behind in the BaTiO3 layer when Ba2+ being the faster diffusion A-site cation have moved across into the SrTiO3 layer in a significantly higher content. The interface phases grow progressively to a coherent second-phase layer upon prolonged annealing for 100 h. It is revealed by the transmission electron microscopy that residual pores, similar to the Kirkendall type in the classical Cu-Zn diffusion couple, generated at ~100 μm away from the interface and located in the BaTiO3 layer. This is attributed to the significantly different lattice diffusivities between two A-cations, i.e. Ba2+ being faster than Sr2+ by approximately three times, with A-site vacancies ( ) created in the grains of the BaTiO3 layer. Together with B-site cation vacancy ( ) and oxygen vacancy ( ), similar to the prismatic loops formed in quenched aluminium, condensation of vacancies via a reverse Schottky defect reaction has formed such Kirkendall-like pores within BaTiO3 grains. Interdiffusion has resulted in forming the solid solutions of (Ba,Sr)TiO3, with Sr2+ being solute cation, and (Sr,Ba)TiO3, with Ba2+ being solute cation, in the initial layers, respectively, and the characteristic core-shell grains responsible for the diffuse-phase transition. A mechanism of how cation diffusion produces the core-shell grains in both layers, modified from Bow (1990) and Liu (1991), is proposed.
Abstract..........................................................................I
摘要................................................................................III
目錄:............................................................................IV
第一章 前言:................................................................1
第二章 原理與文獻回顧:............................................3
2-1鈦酸鋇之晶域(domain):.......................................3
2-2晶核與晶殻結構(core-shell structure):............10
2-3理想溶液擴散、鈦酸鋇跟鈦酸鍶相互擴散:......12
2-4 BaO-TiO2之平衡相圖:.......................................18
第三章 實驗步驟:.......................................................21
3-1起始粉末:..............................................................21
3-2試片製程:..............................................................22
3-3觀察設備與前處理:..............................................27
3-3.1 x-ray繞射分析儀:..............................................27
3-3.2光學顯微鏡(OM)與掃描電子顯微鏡(SEM):...27
3-3.3穿透式電子顯微鏡(TEM):................................28
第四章 實驗結果:.......................................................30
4-1 BaTiO3未摻雜SrTiO3之研究:...........................30
4-1.1 x-ray繞射分析:..................................................30
4-1.2表面微結構分析:...............................................30
4-1.3內部微結構分析:...............................................34
4-2 BaTiO3摻雜SrTiO3研究:...................................36
4-2.1 x-ray繞射分析:..................................................36
4-2.2表面微結構分析:................................................36
4-2.3內部微結構分析:................................................42
4-3 BaTiO3與SrTiO3疊層界面研究:........................43
4-3.1光學顯微鏡(OM)觀察:........................................44
4-3.2 x-ray繞射分析:...................................................48
4-3.2掃描式電子顯微鏡(SEM)觀察:..........................57
4-3.3穿透式電子顯微鏡(TEM)觀察:..........................75
第五章 結果討論:.........................................................85
第六章 結論:.................................................................91
第七章 未來工作:.........................................................93
參考文獻:......................................................................94
附錄一:砂紙號數對照表..............................................97
1. D. Kolar, M. Trontelj andr Z. Stadle, ‘‘Influence of Interdiffusion on Solid Solution Formation and Sintering in the System BaTiO3-SrTiO3,’’ J. Am. Ceram. Soc., 65 [10] 470-74 (1982).
2. S. Nomura, ‘‘State Reaction between Barium Titanate and Strontium Titanate,’’ J. Phys. Soc. Jpn., 11 [9] 924-29 (1956).
3. S. M. Wang and S. J. L. Kang, ‘‘Effect of Grain Boundary Structure on Diffusion-Induced Grain Boundary Migration in BaTiO3,’’ J. Am. Ceram. Soc., 88 [11] 3267-69 (2005).
4. B. K. Lee and S. Y. Chung, ‘‘Grain Boundary Faceting and Abnormal Grain Growth in BaTiO3,’’ Acta Mater., 48 [7] 1575-80 (2000).
5. Y. C. Wu, ‘‘An analysis of defects in metastably retained hexagonal barium titanate,’’ Ph.D. Thesis, Nation Sun Yat-Sen University, Taiwan, 2004.
6. C. P. Liu, ‘‘A study of diffuse Phase Transition in BaTiO3,’’ Master Thesis, Nation Sun Yat-Sen University, Taiwan, 1980.
7. J. K. Liou, ‘‘A TEM study on the Microstructure of Undoped and Sr-doped Barium Titanate,’’ Master Thesis, Nation Sun Yat-Sen University, Taiwan, 1999.
8. Z. Donald, ‘‘Colloidal Silica Polishing,’’ Quality Matters Newsletter., 2 [3] 1-3 (2003).
9. M. H. Lin, ‘‘Pressureless-sintering and microstructure development on non-stoichiometric barium titanate composition,’’ Ph.D. Thesis, Nation Sun Yat-Sen University, Taiwan, 1998.
10. J. K. Liou, M. H. Lin and H. Y. Lu, ‘‘Crystallographic Faceting in sintered Barium Titanate,’’ J. Am. Ceram. Soc., 85 [12] 2931-37 (2002).
11. Y. L. Zhan, ‘‘An analysis of grain boundary dislocations and its indication of {111} twin growth in BaTiO3,’’ Master Thesis, Nation Sun Yat-Sen University, Taiwan, 2006.
12. H. Y. Lu, N. J. Ho and S. Y. Cheng, ‘‘Transformation-Induced Twinning: The 90° and 180° Ferroelectric Domains in Tetragonal Barium Titanate.,’’ J. Am. Ceram. Soc., 89 [7] 2177-87 (2006).
13. B. Jaffee, W. R. Cook and H. Jaffee, Piezoelectric ceramics, Academic Press, N. Y., 1971.
14. W. F. Lytle, ‘‘X-Ray Diffractometry of Low-Temperature Phase Transformations in Strontium Titanate, ’’ J. App. Phys., 35 [7] 2212-15 (1964).
15. H. Frayssignes, B.L. Cheng, ‘‘Fantozzi G. and Button T. W., ‘‘Phase transformation in BST ceramics investigated by internal friction measurement,’’ J. Euro. Ceram. Soc., 25 3203-06 (2005)
16. H. Y. Lu, J. S. Bow and W. H. Deng, ‘‘Core-shell structure in ZrO2-modified BaTiO3 ceramic,’’ J. Am. Ceram. Soc., 73 [12] 3562-68 (1990).
17. J. S. Kim and S. J. L. Kang, ‘‘Formation of Core-shell Structure in the BaTiO3-SrTiO3 System,’’ J. Am. Ceram. Soc., 82 [4] 1085-88 (1999).
18. E. P. Butler, H. Jain, and D. M. Smyth, ‘‘Interdiffuse of Alkaline Earth Cations in their Titanates,’’ Diffus. Defect Data, Pt. A, 66-69 1519-24 (1989).
19. S. Gopalan, and A. V. Virkar, ‘‘Interdiffusion and Kirkendall Effect in Doped Barium Titanate-Strontium Titanate Diffusion Couples,’’ J. Am. Ceram. Soc., 78 [4] 993-98 (1995).
20. S. Gopalan, and A. V. Virkar, ‘‘Interdiffusion and Kirkendall Effect in Doped BaTiO3-BaZrO3 Perovskites:Effect of Vacancy Supersaturation,’’ J. Am. Ceram. Soc., 82 [10] 2887-99 (1999).
21. S. Lee, C. A. Randall, and Z.-K. Liu, ‘‘Modified Phase Diagram for the Barium Oxide-Titanium Dioxide System for the Ferroelectric Barium Titanate,’’ J. Am. Ceram. Soc., 90, [8] 2589-2594 (2007).
22. E. Tillmanns, W. Hofmeister, and W. H. Baur, ‘‘Variation on the Theme of Closest Packing: The structural Chemistry of Titanate Compounds, ’’ J. Solid State Chem., 58, 14-28 (1985).
23. A. Yamada, Y.-M. Chiang, ‘‘Nature of Cation Vacancies Formed to Compensate Donors during Oxidation of Barium Titanate, ’’ J. Am. Ceram. Soc., 78, [4] 909-914 (1995).
24. Y.-M. Chiang, T. Takagi ‘‘Grain-Boundary Chemistry of Barium Titanate and Strontium Titanate: Ι, High-Temperature Equilibrium Space Charge’’ J. Am. Ceram. Soc., 73, [11] 3278-3285 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔