(3.238.88.35) 您好!臺灣時間:2021/04/19 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊明耀
研究生(外文):Ming-Yao Yang
論文名稱:稀土元素摻雜β-LiGaO2與γ-LiAlO2粉末發光性質研究
論文名稱(外文):Investigation on luminescence property of rare-earth element doped β-LiGaO2 and γ-LiAlO2
指導教授:周明奇
指導教授(外文):Ming-Chi Chou
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:58
中文關鍵詞:螢光粉發光固態反應法γ-LiAlO2β-LiGaO2
外文關鍵詞:solid-stateluminescencephosphorβ-LiGaO2γ-LiAlO2
相關次數:
  • 被引用被引用:1
  • 點閱點閱:332
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文以高純度Ga2O3 (99.999%)、Al2O3 (99.999%)、Li2CO3 (99.999%)、CeO2 (99.98%)和Eu2O3 (99.98%)粉末作為反應物,分別依所需摻雜的Ce和Eu之莫耳濃度來配製,經均勻混合後,以固態反應法分別在所需實驗條件下燒結來合成β-LiGaO2:Ce3+、β-LiGaO2:Eu3+與γ-LiAlO2:Eu3+之螢光粉。
研究結果顯示,於燒結溫度1000℃合成之LiGaO2螢光粉,其顆粒大小為1~3μm,顆粒型態為楕圓狀,成分為高純度之β-LiGaO2,且結晶性相當良好;於1000℃合成之LiAlO2螢光粉,其顆粒大小為1~3μm,顆粒型態為不規則塊狀,為結晶性良好之γ-LiAlO2。光學量測上,使用波長325 nm的氦-鎘(He-Cd)雷射做為激發光源,經分析後可發現β-LiGaO2:Ce3+於波長450至650 nm之間有一黃綠光之放射峰,且於波長519 nm處放射強度達至最大值,其中在摻雜Ce濃度為0.5 mole %時發光強度最強;β-LiGaO2:Eu3+ 與γ-LiAlO2:Eu3+ 於波長588至630 nm之間有數個橘紅光之放射峰,分別在摻雜Eu濃度9 mole %與7 mole %時發光強度最強,且最大放射強度皆位於波長612 nm處。
The powder phosphor of β-LiGaO2:Ce3+ 、β-LiGaO2:Eu3+ and γ-LiAlO2 were prepared by using the reagents of Ga2O3 (99.999%), Al2O3 (99.99%), Li2CO3 (99.999%), CeO2 (99.98%) and Eu2O3 (99.98%). Cerium and europium doped β-LiGaO2 respectively and europium doped γ-LiAlO2 phosphors were synthesized by the method of high temperature solid-state reaction. The Ga, Al, Li, Ce and Eu reagents were mixed according to the requisite stoichiometric ratios. The mixture was mixed thoroughly and sintered at requisite temperature in a tube furnace in atmosphere for several hours. Then the products were cooled down to room temperature and ground into powder to get the final product.
The phase purity and crystallinity of the as-synthesized, cerium and europium doped β-LiGaO2 phosphors respectively and europium doped γ-LiAlO2 phosphors, were characterized using x-ray powder diffraction. The particle size and the morphology of the samples were analyzed by scanning electron microscopy. Luminescence properties of the β-LiGaO2 and the γ-LiAlO2 phosphor samples with different cerium doping and europium doping concentrations were studied.
The photoluminescence spectra of cerium doped β-LiGaO2 showed a broad yellow-green light emission range from 450 to 640 nm with the peak at 519 nm. The strongest intensity peak of luminescence was found at 0.5 % cerium doping concentration synthesized at 1000℃. The photoluminescence spectra of europium doped β-LiGaO2 and γ-LiAlO2 showed the orange-red light emission range from 588 to 630 nm with the maximum peak at 612 nm. The strongest intensity peaks of luminescence were found respectively at 9 % and 7 % europium doping concentration synthesized at 1000℃.
摘 要 I
Abstract II
誌 謝 IV
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 基礎理論與文獻回顧 5
2-1 螢光材料分類 5
2-2 無機螢光材料之組成 6
2-2-1 螢光材料之摻雜物 6
2-2-2 螢光材料之主體材料 8
2-3 稀土離子的特性 9
2-3-1 稀土離子之電子躍遷 9
2-3-1.1 Ce的電子躍遷 10
2-3-1.2 Eu的電子躍遷 10
2-3-2 稀土離子的發光特性 11
2-4 螢光材料之激發與發射 12
第三章 實驗方法及步驟 13
3-1 實驗用起始原料 13
3-2 實驗流程 14
3-2-1 製備β-LiGaO2:Ce3+ 螢光粉參數及方法 14
3-2-1.1 不同溫度下合成螢光粉主體 14
3-2-1.2 不同濃度β-LiGaO2:Ce3+ 之合成 14
3-2-2 製備β-LiGaO2:Eu3+ 螢光粉參數及方法 17
3-2-2.1 不同溫度下β-LiGaO2:Eu3+之合成 17
3-2-2.2 不同濃度β-LiGaO2:Eu3+之合成 17
3-2-2 製備γ- LiAlO2:Eu3+ 螢光粉參數及方法 19
3-2-2.1 不同溫度下γ- LiAlO2:Eu3+ 之合成 19
3-2-2.2 不同濃度γ- LiAlO2:Eu3+ 之合成 19
3-3 樣品分析儀器 21
3-3-1 掃描式電子顯微鏡( Scanning electron microscope, SEM ) 21
3-3-2 X光繞射儀(X-ray diffraction, XRD) 21
3-3-3 光激發光譜儀(Photoluminescence, PL) 21
3-3-4 螢光激發光譜儀(Photoluminescence excitation, PLE) 21
第四章 實驗結果與討論 23
4-1 β-LiGaO2:Ce3+ 螢光粉 23
4-1-2 β-LiGaO2 之X光繞射(XRD)分析 23
4-1-3 β-LiGaO2 之電子掃描顯微鏡(SEM)分析 26
4-1-4 β-LiGaO2:Ce3+ 之發光特性分析 27
4-1-4.1 摻雜濃度對β-LiGaO2:Ce3+ 發光強度之影響 28
4-1-4.2 β-LiGaO2:Ce3+ 於不同激發光源之光激發光譜分析 29
4-2 β-LiGaO2:Eu3+ 螢光粉 30
4-2-1 β-LiGaO2:Eu3+ 之X光繞射(XRD)分析 30
4-2-2 β-LiGaO2:Eu3+ 之電子掃描顯微鏡(SEM)分析 31
4-2-3 β-LiGaO2:Eu3+ 之發光特性分析 31
4-2-3.1 摻雜濃度對β-LiGaO2:Eu3+ 發光強度之影響 33
4-2-3.2 燒結溫度對β-LiGaO2:Eu3+ 發光強度之影響 34
4-3 γ-LiAlO2:Eu3+ 螢光粉 36
4-3-1 γ-LiAlO2:Eu3+ 之X光繞射(XRD)分析 36
4-3-2 γ-LiAlO2:Eu3+ 之電子掃描顯微鏡(SEM)分析 39
4-3-3 γ-LiAlO2:Eu3+ 之發光特性分析 40
4-3-3.1 摻雜濃度對γ-LiAlO2:Eu3+ 發光強度之影響 42
第五章 結論 43
參考文獻 44
[1] 羅俊仁 博士, “固態照明與白光發光二極體,光電科技資料叢書之三十一”,台北,(2004)
[2] 楊素華,螢光粉在發光上的應用,科學發展, 358 (2002) 66-71
[3] Jianhua Hao, S.A. Studenikin, Michael Cocivera, J. Lumin. 93 (2001) 313-319.
[4] Rong-Jun Xie, Naoto Hirosaki, Mamoru Mitomo, Appl. Phys. Lett. 88 (2006) 101104.
[5] 劉如熹、王健源,”白光發光二極體製作技術”;全華科技圖書股份有限公司:台北,(2001)
[6] 劉如熹、劉宇�琚A”發光二極體用氧氮螢光粉介紹”;全華科技圖書股份有限公司:台北,(2006)
[7] 劉如熹、林益山,人類未來照明的夢想,科學發展, 390 (2005) 56-59
[8] G. Blasse and B.C. Grabmaier, “Luminescence Materials”, Springer-Verlag, New York (1994).
[9] H. P. Kallmann and G. M. Spruch, “Luminescence of Organic and
Inorganic Materials”, John Wiley and Sons, Inc., New York (1962).
[10] 楊俊英著,“電子產業用螢光材料之應用調查”;工研院,(1992)
[11] R. C. Ropp, “Luminescence and the Solid State”, Amsterdam, Boston (1991).
[12] M. D. Galanin, “Luminescence Centers of Rare Earth Ions in Crystal Phosphors”, Nova Science Publishers, New York (1988).
[13] A. Meijerink, “Experimental Techniques,” Luminescence of Solids,
D. R. Vij (editor), Plenum Press, New York (1998).
[14] B. E. Douglas, D. H. McDaniel, and J. J. Alexander, “Concepts and Models of Inorganic Chemistry”-3rd, John Wiley and Sons, Inc., New York (1994).
[15] A. H. Kitai, “Solid State Luminescence”, Chapman and Hall, New York (1993).
[16] P. W. Atkins, “Physical Chemistry”-6th, Oxford University Press, Tokyo (1998).
[17] 工研院,材料產業暨稀土材料發展研討會論文集,工研院編印(1994)
[18] C. S. Shi and Q. Su, “The chemistry and physics of abnormal valence rare elements”, Science Press, Beijing, 1994.
[19] E. Coetsee, J.J. Terblans, H.C. Swart, J. Lumin. 126 (2007) 37–42.
[20] E. Mihokova, M. Nikl, J.A. Mares, A. Beitlerova, A. Vedda, K. Nejezchleb, K. Blazek, C. D’Ambrosio, J. Lumin. 126 (2007) 77–80.
[21] Hui-Li Li, Xue-Jian Liu, Li-Ping Huang, Opt. Mater. 29 (2007) 1138–1142.
[22] Yibo Chen, Jing Wang, Menglian Gong, Qiang Su, J. Solid State Chem. 180 (2007) 1165–1170.
[23] Ho Seong Jang, Won Bin Im, Dong Chin Lee, Duk Young Jeon, Shi Surk Kim, J. Lumin. 126 (2007) 371-377.
[24] T. Ishizaka, R. Nozaki, Y. Kurokawa, J. Phys. Chem. Solids. 63 (2002) 613-617.
[25] D. Ravichandran, Rustum Roy, A-G. Chakhovskoi, C.E. Huntb, W.B.
White, S. Erdei, J. Lumin. 71 (1997) 291-297.
[26] Xuefeng Yang, Guiling Ning, Xin Li, Yuan Lin, Mater. Lett. 61 (2007) 4694–4696.
[27] Ling He, Yuhua Wang, Hui Gao, J. Lumin. 126 (2007) 182–186.
[28] Shen-Kang Ruan, Jian-Guo Zhou, Ai-Min Zhong, Jie-Fei Duan, Xian-Bi Yang, Mian-Zeng Su, J. Alloys Compd. 275-277 (1998) 72-75.
[29] Yanhong Li, Guangyan Hong, J. Lumin. 124 (2007) 297-301.
[30] A. Beiser, “Concepts of Modern Physics”, McGraw-Hill Companies, Inc., International Edition (2003).
[31] William M. Yen, J. Lumin. 399 (1999) 83-84.
[32] E. Zych, A. Meijerink, C. de Mello Donega, J. Phys.: Condens. 15 (2003) 5145.
[33] M. Kwak, J. Park, S. Shon, Solid State Commun. 130 (2004) 199.
[34] C.-S. Park, M.-G. Kwak, S.-S. Choi, Y.-S. Song, S.-J. Hong, J.-I. Han, D.Y. Lee, J. Lumin. 118 (2006) 199.
[35] Y. Zhou, J. Lin, M. Yu, S. Wang, H. Zhang, Mater. Lett. 56 (2002) 628.
[36] S.C. Gedam, S.J. Dhoble, S.V. Moharil, J. Lumin. 128 (2008) 1-6.
[37] A.V. Gaister, E.V. Zharikov, G.M. Kuz’micheva, Yu. M. Papin, V.B. Rybakov, V.A. Smirnov, Dokl Phys. 45 (2000) 191-193.
[38] Xue-Jian Liu, Hui-Li Li, Rong-Jun Xie, Naoto Hirosaki, Xin Xu, Li-Ping Huang, J. Lumin. 127 (2007) 469-473.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔