跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/14 04:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王勝志
研究生(外文):Sheng-Chih Wang
論文名稱:AlGaN/AlN/GaN異質結構的電調制反射光譜研究
論文名稱(外文):Electroreflectance spectra of AlGaN/AlN/GaN heterostructure
指導教授:王東波王東波引用關係
指導教授(外文):Dong-Po Wang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:電調制光譜二維電子氣
外文關鍵詞:2DEGElectroreflectance spectra
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們測量不同偏壓下AlGaN/AlN/GaN異質結構的電調制反射光譜研究。AlGaN內部電場(FAlGaN)的大小可以由在AlGaN能帶上方所量測到的Franz-Keldysh oscillation (FKOs) 藉由fitting line-shape of FKOs來計算其大小。FAlGaN和VDC的關係圖存在一些奇特的現象,有別於之前所做的AlGaN/GaN異質結構的研究。
我們利用 Poisson-Schrödinger solver 來模擬實驗結果,顯示了2DEG不只存在於AlN/GaN介面的量子井,還存在於AlGaN/AlN介面的量子井,這也可以由 capacitance-voltage measurement 得到相同的結果。當施加更多的負偏壓VDC時,由之前的實驗結果可以知道,當負偏壓增加的時候,GaN的導電帶將會變得比較平緩,同時會使AlN/GaN介面的2DEG逐漸變少,直到VDC=-2.0V,量子井將會變平,而2DEG將會耗盡。且我們發現當表面的價電帶開始高於AlGaN/AlN 量子井導電帶底部的時候,AlGaN/AlN介面的2DEG開始耗盡。
Electroreflectance spectra of AlGaN/AlN/GaN heterostructures were measured at various biased voltages (Vdc). Strengths of the internal electric field in AlGaN (FAlGaN) were evaluated from periods of Franz-Keldysh oscillations (FKOs), which were observed above band-gap energy of AlGaN. The relation between FAlGaN and Vdc exhibits an anomalous behavior, which is different from the previous results of the AlGaN/GaN heterostructure. It agrees with the theoretical result of a Poisson-Schrödinger calculation, which shows that two dimensional electron gas (2DEG) exists not only in quantum well (QW) at AlN/GaN interface, but also in QW at AlGaN/AlN interface. This is also consistent with electron-density distribution obtained by capacitance-voltage measurements. When Vdc becomes more negative, the previous mechanism of depleting 2DEG is through flatting one side of QW. However, it was found that the depletion of 2DEG can also occur when the top of valence band at surface becoming higher than bottom at QW.
第一章 導論及相關理論
1.1 前言....................................................................................................1
1.2 激子................................................................................................2
1.3 能帶......................................................................................3
第二章 調制光譜
2.1 調制光譜學簡介........................................................................6
2.2調制光譜學的機制.....................................................................8
2.3 反射率、吸收係數與介電函數................................................13
2.4 譜線圖形性質...........................................................................19
2.5 Franz-Keldysh Oscillations 與
asymptotic form........................................................................26
第三章 實驗樣品特性分析
3.1基板….........................................................................................30
3.2應變的產生.................................................................................31
3.3 極化效應…...............................................................................34
3.4 總極化向量...............................................................................38
3.5 表面極化密度….......................................................................38
3.6 exclusion layer............................................................................40
第四章 實驗設計
4.1 實驗樣品...................................................................................41
4.2實驗樣品特性.............................................................................43
4.3 實驗裝置...................................................................................47
第五章 實驗結果與討論
5.1 光譜分析..................................................................................49
5.2實驗結果討論與分析.................................................................52
第六章 結論............................................................................................61
Reference..........................................................................................62
附錄..........................................................................................................64
1. S. Rajan, H. Xing, S. DenBaars, U. K. Mishra, and D. Jena, Appl. Phys.Lett. 84, 1591 (2004).
2. F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, 10024 (1997).
3. K. Shimada, T. Sota, K. Suzuki, and H. Okumura, Jpn. J. Appl. Phys., Part 2, 37, L1421 (1998).
4. E. J. Miller, E. T. Yu, C. Poblenz, C. Elsass, and J. C. Speck, Appl. Phys. Lett. 80, 3551 (2002).
5. J. A. Garrido, J. L. Sánchez-Rojas, A. Jiménez, E. Muñoz, F. Omnes, and P. Gibart, Appl. Phys. Lett. 75, 2407 (1999).
6. L. Jia, E. T. Yu, D. Keogh, P. M. Asbeck, P. Miraglia, A. Roskowski, and R. F. Davis, Appl. Phys. Lett. 79, 2916 (2001).
7. See, for example, R. N. Bhattacharya, H. Shen, P. Parayanthal, and F.H. Pollak,
Phys. Rev. B 37, 4004 (1988).
8. D. E. Aspnes, Phys. Rev. B 10, 4228 (1974)
9. Program 1D Poission/Schrödinger at http://www.nd.edu/~gsnider.
10. S. M. Sze, in Semiconductor devices, physics and technology (Wiley, New York,2002)
11. M. Cardona, in Modulation Spectroscopy (Academic, New York,1969).
12. D. E. Aspnes, in Handbook on Semiconductors, edited by M.Balkanski (North-Holland, New York, 1980), Vol.2, p. 109.
13.F.H.Pollak,inHand book on Semiconductors, edited by M. Balkanski(North-Holland, New York, 1994).
14. H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
15. B. O. Seraphin and N. Bottka, Phys. Rev, 145, 628 (1966)
16. D. E. Aspnes, Surf. Sci. 37, 418 (1973)
17. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors:Physics and Materials
Properties(New York,1996,springer)
18. D. E. Aspnes and A. A. Studna, Phys. Rev, B 7, 4605 (1973)
19. P.Y. Yu and M. Cardona, Fundamentals of Semiconductors:Physics and Materials Properties(New York,1996,springer)
20. S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. Lett. 87, 965 (2000)
21. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, and L. F. Eastman, J. Phys.: Condens. Matter 14, 3399 (2002).
22. O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M.Murphy, W.J. Schaff and L.F. Eastman, Jorunal of Applied Physics,Vol 85, 3222, (1999).
23. Charles Kittel, Introduction to Solid State Physics,(7th edition)
24. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K.Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff and L.F. Eastman, Jorunal of Applied Physics, Vol 87, 334, (2000).
25. Makoto Miyoshi, Takashi Egawa and Hiroyasu Ishikawa, Kei-Ichiro Asai, Tomohiko Shibata, Mitsuhiro Tanaka, Osamu Oda, J. Appl. Phys. 98, 063713 (2005)
26. S. N. Mohammad and H. Morkoc, Prog. Quant. Electron. 20, 361 (1996).
27. S. R. Kurtz, A. A. Allerman, D. D. Koleske, and G. M. Peake, Appl. Phys. Lett. 80, 4549 (2002).
28. E. S. Snow, O. J. Glembocki, and B. V. Shanabrook, Phys. Rev. B 38, 12483 (1988).
29. D. Y. Lin, Y. S. Huang, Y. F. Chen, and K. K. Tiong, Solid State Commun. 107, 533 (1999).
30. A. Drabińska, K. P. Korona, R. Bożek, J. M. Baranowski, K. Pakula, T. Tomaszewicz, and J. Gronkowski, Phys. Status Solidi C 0, 329 (2002).
31. A. T. Winzer, R. Goldhahn, G. Gobsch, A. Link, M. Eickhoff, U. Rossow, and A. Hangleiter, Appl. Phys. Lett. 86, 181912 (2005).
32. Dong-Po Wang, Chi-Chang Wu, Chia-Chun Wu, Appl. Phys.Lett. 89, 161903 (2006)
33. Anders Lundskog, Urban Forsberg, and Erik Janzén, thesis (2007).
34. W. R. L. Lambrecht, K. Kim, S. N. Rashkeev, and B. Segall. Electronic and ptical properties of the group-III nitrides, their heterostructures and alloys. Mat. Res.Soc. Symp. Proc. 395, 455-466 (1996).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top