( 您好!臺灣時間:2021/04/15 08:36
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Hsiu-Ling Hsieh
論文名稱(外文):Spatial variations of carbonate parameters and CO2 flux in seawaters around Taiwan during summer 2006
指導教授(外文):David D. Sheu
  • 被引用被引用:4
  • 點閱點閱:71
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究討論的區域包含台灣東部外海、呂宋海峽(Luzon Strait; LS)及南海(South China Sea; SCS)北部海域。根據上述海域90個測站採集的表水樣品分析結果顯示,不同水文類型之碳化學參數(pH、DIC、TA及fCO2)特性,有極為顯著之差異。台灣東北部外海區域之陸棚表層水(Shelf Surface Water; SSW)因受湧升作用之影響,有高DIC、低pH值,且因為湧升帶來富含DIC之深水與額外的營養鹽,使得此區域同時具有吸收及釋放CO2的現象。於沿岸水(Coastal Water; CW)區域,因有額外營養鹽之輸入,提昇了生物生產力,使得此區域與SSW為主要吸收CO2的海域。fCO2的變化主要受到溫度及生物作用兩種機制控制,當溫度增加時fCO2亦增加,反之亦然。在台灣東部外海區域高溫、高鹽及貧營養鹽之黑潮表層水(Kuroshio Surface Water; KSW)與黑潮表層水與呂宋沿岸流之混合水(KSW + Luzon Coastal Current; KSW + LCC),表層呈現高pH、TA及低fCO2的現象,由於fCO2與溫度變化無關,所以推測此處fCO2變化因素是受到生物作用的影響,水體中之DIC含量降低,進而提昇TA/DIC之比值,導致fCO2值降低。整個台灣東部海域(21.5 oN ~ 26 oN、121 oE ~ 123 oE)之CO2的吸收主要於SSW與CW區域,其它區域之CO2的吸收及釋放量差異並不大。
LS區域有高溫、低鹽的呂宋沿岸流(Luzon Coastal Current; LCC),其特性為低DIC、TA之特性且fCO2值較高,因受高溫的影響,使得此區域為主要釋放CO2之海域。SCS北部之湧升區域(Upwelled Water; UW)周圍之海域整體呈現高DIC、TA及低pH之現象,而fCO2則因為生物生產力的影響而偏低。於SCS北部與LS區域之fCO2變化因與溫度呈現良好相關,顯示受控於表水溫度的改變。概括而論,整個SCS北部海域(20 oN ~ 22.5 oN、117 oE ~ 121 oE)CO2的吸收及釋放量差異並不大。
CO2 Flux用於表示海水吸收或釋放CO2的量,當海水吸收大氣中的CO2時,通量為負值,即匯(sink);反之當CO2自水體釋放至大氣中,通量即為正值,即源(source)。本研究期間台灣周遭海域CO2 Flux的分佈,在CW區域的CO2吸收量最高,其通量為 -0.63±0.88 mmol m-2 day-1。於LCC區域的CO2釋放量最大,通量為 0.12±0.22 mmol m-2 day-1。整體而言,台灣周遭海域之是CO2 Flux為 -0.12±0.43 mmol m-2 day-1,為CO2的一個微弱的匯區。
Seawater samples around Taiwan were collected for pH, DIC, TA and fCO2 analyses. Results showed that their distributions closely related to the distribution of different water types. The high DIC and low pH but lower fCO2 values were found in the Shelf Surface Water (SSW) in the northern part of the study area, while the low DIC and TA but higher fCO2 values were found in the Luzon Coastal Current (LCC) in the northern Luzon Strait. The LCC was weak source under the influence of high temperature. Coastal Water (CW) and SSW represented two major sink areas due to the enhanced biological production stimulated by the high nutrient input from coastal and subsurface waters, respectively. Results also showed that high pH and TA but lower fCO2 were found in Kuroshio Surface Water (KSW) and KSW + Luzon Coastal Current (KSW+LCC) in the region off eastern Taiwan. The warm and saline KSW and KSW+LCC were weak sink owing to the elevated TA/DIC ratio, suggesting their CO2 uptake potential were influenced by biological production. The entire northern SCS represented a weak source under the influence of temperature. Finally, seawaters around Taiwan collectively acted as a sink of atmospheric CO2 with a flux of -0.12±0.43 mmol m-2 day-1 during the study period.
致謝 I
摘要 II
Abstract IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 海水中之碳化學 1
1-3 台灣周遭海域之海流概述 2
1-4 聯合探測計畫源起 5
1-5 研究目的 6
第二章 研究方法 7
2-1 採樣位置 7
2-2 分析方法 9
2-2-1 樣品之採集方式 9
2-2-2 酸鹼值(pH)之測定 9
2-2-3 溶解態無機碳(DIC)測定 10
2-2-4 總滴定鹼度(TA)測定 12
2-2-5 海水中二氧化碳分壓(fCO2oc)的計算 13
2-2-6 海氣交換之碳通量(CO2 Flux) 14
第三章 結果與討論 16
3-1 水文類型之特性與分佈 16
3-2 表層碳化學參數之空間分佈 20
3-3 fCO2、ΔfCO2與CO2 Flux之空間分佈及探討其變化
之控制因素 26
第四章 結論 36
第五章 參考文獻 41

Brewer, P. G. (1997), Ocean chemistry of the fossil fuel CO2 signal: the haline signal of “business as usual”, Geophysical Research Letters, 24, 11, 1367-1369.
Cai, W. J, M. Dai and Y. Wang (2006), Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis, Geophysical Research Letters, 33, L12603, doi: 10.1029/2006GL026219.
Chen, C. T. A., R. Ruo, S. C. Pai, C. T. Liu and G. T. F. Wong (1995), Exchange of water masses between the East China Sea and the Kuroshio off northeastern Taiwan. Continental Shelf Research, 15, 19-39.
Chen, C. T. A. (1996), The Kuroshio intermediate water is the major source of nutrient on the East China Sea continental shelf. Oceanologica Acta, 19, 5, 523-527.
Chen, C. T. A. (2004), Exchanges of carbon in the coastal seas. in The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World, edited by C. B. Field and M. R. Raupach, pp. 341-351, Isl., Washington, D. C.
Chern C. S., J. Wang and D. P. Wang (1990), The exchange of Kuroshio and East China Sea shelf water. Journal of Geophysical Research, 95, 16017-16023.
Chou, W. C., D. D. D. Sheu, C. T. A. Chen, S. L. Wang and C. M. Tseng (2005), Seasonal variability of carbon chemistry at the SEATS Time-series site, northern South China Sea between 2002 and 2003. Terrestrial, Atmospheric and Ocecnic Sciences, 16, 445-465.
Chuang, W. S., H. W. Li, T. Y. Tang and C. K. Wu (1993), Observations of the countercurrent on the inshore side of Kuroshio northeast of Taiwan. Journal of Oceanography, 49, 581-592.
Dickson, A. G. and F. J. Millero (1987), A comparison of the equilibrium constants for the dissociation of the carbonic acid in seawater media. Deep-Sea Research, 34, 1733-1743.
Dickson, A. G. (1993), pH buffers for sea water media based on the total hydrogen ion concentration scale. Deep-Sea Research, 40, 107-118.
DOE (1994), Handbook of methods for the analysis of the various parameters of the carbon dioxide system in seawater. In: Dickson A. G., Goyet C. (Eds), U.S. Department of Energy CO2 science Team Report, version 2, unpublished manuscript.
Farris A. and M. Wimbush (1996), Wind-induced Kuroshio intrusion into the South China Sea. Journal of Oceanography, 52, 771-784.
Gong, G. C., K. K. Liu and S. C. Pai (1995), Predication of nitrate concentration from two end member mixing in the East China Sea. Continental Shelf Research, 15, 827-842.
Guggenheim, E. A. (1967), An advanced treatment for chemists and physicists. Thermodynamics 5th ed., pp. 390, North-Holland.
Hu, J., H. Kawamura, H. Hong and Y. Qi (2000), A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrusion. Journal of Oceanography, 56, 607-624.
Keeling, C. D. and T. P. Whorf (2005), Atmospheric CO2 records from sites in the SIO air sampling network, in Trends: A Compendium of Data on Global Change, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
Kleypas, J. A., R. W. Buddemeier, D. Archer, J. P. Gattuso, C. Langdon and B. N. Opdyke (1999), Geochemical consequence of increased atmospheric carbon dioxide on coral reefs. Science, 284, 118-120.
Levelt-Sengers, J. M. H., M. Klein and J. S. Gallagher (1971), Pressure-volume-temperature relationships of gases: virial coefficients. Heat Division, U. S. National Bureau of Standards. AEDC TR-71-39.
Lewis, E. and D. Wallace (1998), Program developed for CO2 system calculations, Carbon Dioxide Information Analysis Center, Report ORNL/CDIAC-105, Oak Ridge National Laboratory, Oak Ridge, Tennessee, U.S.A.
Liang, W. D., T. Y. Tang, Y. J. Yang, M. T. Ko and W. S. Chuang (2003), Upper-ocean currents around Taiwan. Deep-Sea Research II, 50, 1085-1105.
Liu K. K, G. C. Gong, S. Lin, C. Z. Shyu, S. C. Pai, C. L. Wei and S. Y. Chao (1992), Response of Kuroshio upwelling to the onset of northeast monsoon in the sea north of Taiwan: observations and a numerical simulation. Journal of Geophysical Research, 97, 12511-12526.
Liu, K. K., T. Y. Tang, G. C. Gong, L. Y. Chen and F. K. Shiah (2000), Cross-shelf and along-shelf nutrient fluxes derived from flow fields and chemical hydrography observed in the southern East China Sea off northern Taiwan. Continental Shelf Research, 20, 493-523.
Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver and Z. C. Zhao (2007), Global Climate Projections. In: Climate Change 2007: The Physical Science Basis.
Mehrbach, C., C. H. Culberson, J. E. Hawley and R. M. Pytkowicz (1973), Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897-907.
Muller-Karger, F. E., V. Ramon, R. Thunell, R. Luerssen, C. Hu and S. Mane (2005), The importance of continental margins in the globe carbon cycle, Geophysical Research letter, 32, L01602, doi: 10.1029/2004GL 021346.
Qiu, B. and N. Imasato (1990), A numerical study on the formation of the Kuroshio Counter Current and the Kuroshio Breanch Current in the East China Sea. Continental Shelf Research, 10, 165-184.
Qu, T., H. Mitsudera and E. Lindstrom (2000), Intrusion of the North Pacific waters into the South China Sea. Journal of Geophysical Research, 105, 6415-6424.
Sarmiento, J. and N. Gruber (2006), The ocean carbon cycle, in Ocean Biogeochemical Dynamics. pp. 318-358, Princeton University Press, Princeton, N. J.
Shaw, P. T. and S. Y. Chao (1994), Surface circulation in the South China Sea. Deep-Sea Research I, 41, 1663-1683.
Sheu, D. D., W. Y. Lee, C. H. Wang, C. L. Wei, C. T. A. Chen, C. Cherng and M. H. Huang (1996), Sheu, D. D., W. Y. Lee, C. H. Wang, C. L. Wei, C. T. A. Chen, C. Cherng and M. H. Huang (1996), Depth distribution of δ13C of dissolved ΣCO2 in seawater off eastern Taiwan: effect of the Kuroshio current and its associated upwelling phenomenon. Continental Shelf Research, 16, 12, 1609-1619.
Siegenthaler, U. and J. L. Sarmiento (1993), Atmospheric carbon dioxide and the ocean. Nature, 365, 119-125.
Thkahashi, T., S. C. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkof, R. A. Feely, C. Sabine, J. Olafsson and Y. Nojiri (2002), Global sea-sea CO2 flux based on
climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II, 49, 1601-1622.
Thomas, H., Y. Bozec, K. Elkalay and H. J. W. de Baar (2004), Enhanced open ocean storage of CO2 from shelf sea pumping, Science, 304, 1005-1008.
Tian, J., Q. Yang, X. Liang, L. Xie, D. Hu, F. Wang and T. Qu (2006), Observation of Luzon Strait transport. Geophysical Research Letters, 33, L19607, doi: 10.1029/2006GL026272.
Tseng, C. M., G. T. G. Wong, W. C. Chou, B. S. Lee, D. D. Sheu and K. K.Liu (2007), Temporal variations in the carbonate system in the upper layer at the SEATS station. Deep Sea Research II, 54, 1448-1468.
Wang, G. T. F., S. C. Pai, K. K. Liu., C. T. Liu and C. T. A. Chen (1991), Variability of the chemical hydrography at the frontal region between the East China Sea and the Kuroshio northeast of Taiwan. Estuarine Coastal and Shelf Science, 33, 105-120.
Wanninkhof, R. (1992), Relationship between wind speed and gas exchange over the ocean. Journal of Geophysical Research, 97, C5, 7373-7382.
Wanninkhof, R. and W. R. McGillis (1999), A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 97, 13, 1889-1892.
Weiss, R. F. (1974), Carbon dioxide in water and seawater: The solubility of a non-ideal gas. Marine Chemistry, 2, 203-215.
Wyrtki, K. (1961), Physical oceanography of the southeast Asian waters: Scientific results of marine investigation of the South China Sea and the Gulf of Thailand, NAGA Report, 2, pp. 195, Scripps institution of oceanography, La Jolla, California.
Xue, H., F. Chai, N. Pettigrew and D. Xu (2004), Kuroshio intrusion and the circulation in the South China Sea. Journal of Geophysical Research, 109, C02017, dio: 10.1029/2002JC001724.
Yuan, D., W. Han and D. Hu (2006), Surface Kuroshio path in the Luzon Strait area derived from satellite remote sensing data. Journal of Geophysical Research, 111, C11007, doi: 10.1029/2005JC003412.
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔