跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/10 15:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林景彬
研究生(外文):Ching-Pin Lin
論文名稱:基於查表法之函數產生器的有效實作
論文名稱(外文):Efficient Implementation of a Function Generator Based on Look-up Table
指導教授:蕭勝夫
指導教授(外文):Shen-Fu Hsiao
學位類別:碩士
校院名稱:國立中山大學
系所名稱:資訊工程學系研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:查表法函數近似方法
外文關鍵詞:table-based methodsfunction approximations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在數位訊號處理過程中,常常會需要用到可以運算特定數學函數的硬體單元,例如:求倒數、開根號、取指數或對數、三角函數…等運算。而這種函數計算單元,通常採用以查表為主的函數近似方法來實作,如此可避免因為運算繁雜而導致效能不佳,但是隨著精準度提高,表格所占的面積卻將大幅增加。本論文針對兩種不同的函數近似演算法(Piecewise與Multipartite)加以改良,可有效減少在高精準度要求下的表格面積,並實際應用在三維繪圖的點著色引擎(Vertex Shaders)。
In many digital signal processing applications, we often need some special function units that can compute complicated arithmetic functions such as reciprocal, square-root, base-2 logarithm, power of 2, trigonometric functions, etc. The most popular design approaches to compute these single-value functions are based on look-up tables (LUT) with interpolation. In general, there are two different types of LUT-based method: piecewise and multipartite. As the required bit accuracy increases, the size of LUT increases exponentially. In this thesis, we will develop a generator that can automatically synthesize suitable hardware to compute these special arithmetic functions given the required bit accuracy. In particular, higher-order piecewise method will be supported to reduce the table size for high-accuracy applications. The synthesized arithmetic units are used in the design of a vertex shader for 3D graphics application.
Chapter 1 導論 5
1.1 研究動機 5
1.2 論文架構 6
Chapter 2 研究背景與相關研究 7
2.1 查表法(Table-based Methods)簡介 7
2.2 函數近似方法之簡介與分類 10
2.3 Piecewise Table Look-up Method 12
2.4 Bipartite and Multipartite Table Methods 15
Chapter 3 函數運算之相關算術單元 17
3.1 捨棄式乘法單元(Truncated Multiplier) 17
3.2 平方器(Squarer) 22
Chapter 4 High-Order Piecewise Table Method 25
4.1 High-Order Piecewise Table Method的函數近似方法 28
4.2 High-Order Piecewise Table Method資料路徑(datapath)的設計 35
Chapter 5 相關合成結果以及在三維繪圖之應用 39
5.1 函數產生器的合成數據 40
5.2 函數產生器在三維繪圖之應用實例 52
Chapter 6 結論與未來展望 55
6.1 結論 55
6.2 未來展望 56
參考文獻 57
[1]. B. Parhami, “Computer Arithmetic – Algorithms and Hardware Designs,” Oxford University Press, pp. 394-409, 2000.
[2]. J. E. Volder, “The CORDIC Trigonometric Computer Technique,” IRE Transactions. Electron. Computers, Vol. EC-8, No. 3, pp. 330-334, Sep. 1959.
[3]. J. S. Walther, “A Unified Algorithm for Elementary Functions,” Proc. Spring Joint Compute. Conf., pp. 379-385, 1971.
[4]. C. F. Gerald and P. O. Wheatley, “Applied Numerical Analysis Fourth Edition,” Addison-Wesley Publishing Company, pp. 189-203, Jun. 1989.
[5]. J. M. Muller, “A Few Results on Table-Based Methods,” Reliable Computing, Vol. 5, No. 3, pp. 279-288, Aug. 1999.
[6]. D. DasSarma and D. W. Matula, “Faithful Bipartite ROM Reciprocal Tables,” IEEE Trans. Computers, Vol. 47, No. 11, pp. 1216-1222, Nov. 1998.
[7]. M. J. Schulte and J. E. Stine, “Approximating Elementary Functions with Symmetric Bipartite Tables,” IEEE Trans. Computers, Vol. 48, No. 8, pp. 842-847, Aug. 1999.
[8]. M. J. Schulte and J. E. Stine, “The Symmetric Table Addition Method for Accurate Function Approximation,” J. VLSI Signal Processing, Vol. 21, No. 2, pp. 167-177, Jun. 1999.
[9]. F. Dinechin and A. Tisserand, “Some Improvements on Multipartite Table Methods,” Proc. 15th Int''l Symp. Computer Arithmetic, pp. 128-135, Jun. 2001.
[10]. F. Dinechin and A. Tisserand, “Multipartite Table Methods,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 319-330, Mar. 2005.
[11]. J. Cao and B. W. Y. Wei, “High-Performance Hardware for Function Generation,” Proc. 13th Int''l Symp. Computer Arithmetic, pp. 184- 188, Jul. 1997.
[12]. J. Cao, B. Wei, and J. Cheng, “High-Performance Architectures for Elementary Function Generation,” Proc. 15th Int''l Symp. Computer Arithmetic, pp. 136-144, Jun. 2001.
[13]. J. A. Pineiro, J. D. Bruguera, J. M. Muller, “Faithful Powering Computation Using Table Look-Up and a Fused Accumulation Tree,” Proc. 15th Int''l Symp. Computer Arithmetic, pp. 40-47, Jun. 2001.
[14]. J. M. Muller, “Partially Rounded Small-Order Approximations for Architecture, Hardware-Oriented, Table-Based Methods,” Proc. 16th Int''l Symp. Computer Arithmetic, pp. 114-121, Jun. 2003.
[15]. J. A. Pineiro, S. F. Oberman, J. M. Muller, and J. D. Bruguera, “High-Speed Function Approximation Using a Minimax Quadratic Interpolator,” IEEE Trans. Computers, Vol. 54, No. 3, pp. 304-318, Mar. 2005.
[16]. S. F. Oberman and M. Y. Siu, “A High-Performance Area-Efficient Multifunction Interpolator,” Proc. 17th Int''l Symp. Computer Arithmetic, pp. 272-279, Jun. 2005.
[17]. E. G. Walters III and M. J. Schulte, “Efficient Function Approximation Using Truncated Multipliers and Squarers,” Proc. 17th Int''l Symp. Computer Arithmetic, pp. 232-239, Jun. 2005.
[18]. E. J. King and E. E. Swartzlander Jr, “Data-Dependent Truncation Scheme for Parallel Multipliers,” Conference Record of the Thirty-First Asilomar Conference on Signals, Systems & Computers, Vol.2, pp. 1178-1182, Nov. 1997.
[19]. J.-M. Jou, et al., “Design of Low-Error Fixed-Width Multipliers for DSP Applications,” IEEE Transactions on Circuits and System—II: Analog and Digital Signal Processing, Vol. 46 pp. 836-842, Jun. 1999.
[20]. J. E. Stine and O. M. Duverne, “Variations on Truncated Multiplication,” Proceedings of the Euromicro Symposium on Digital System Design, pp. 112-119, Sep. 2003.
[21]. M. J. Schulte and E. E. Swartzlander, Jr., “Truncated Multiplication with Correction Constant,” VLSI Signal Processing VI, pp. 388 – 396, pages 388–396, Oct. 1993.
[22]. E. G. Walters III, J. Schelessman, M. J. Schulte, “Combined. Unsigned and Two’s Complement Hybrid Squarers,” Proceedings of the Thirty Fifth Asilomar Conference on Signals, Systems, and Computers, pp. 861-866, Nov. 2001.
[23]. E. G. Walters III, M. J. Schulte, and M. G. Arnold, “Truncated Squarers with Constant and Variable Correction,” Proceedings of the SPIE: Advanced Signal Processing Algorithms, Architectures, and Implementations XIV, vol. 5559, pp. 40-50, Aug. 2004.
[24]. 魏秉忠, “三維繪圖中幾何運算系統之算術元件產生器之實作,” 國立中山大學資訊工程學系研究所碩士論文, 2007.
[25]. M. J. Schulte and E. E. Swartzlander, Jr., “Hardware Designs for Exactly Rounded Elementary Functions,” IEEE Trans. Computers, vol. 43, no. 8, pp. 964-973, Aug. 1994.
[26]. C. S. Wallace, “A Suggestion for a Fast Multiplier,” IEEE Trans. Electronic Computers, Vol. 13, No. 14, pp. 14-17, Feb. 1964.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top