|
An, G. (1996). The Effects of Adding Noise During Backpropagation Training on a Generalization Performance. Neural Computation, 8(3), 643-674. Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. The Annals of Mathematical Statistics, 41(1), 164-171. Berge, Z., & Collins, M. (1995). Computer mediated communication and the online classroom: overview and perspectives (Vol. 1, pp. 129-137). NJ: Hampton Press. Blake, C. L., & Merz, C. J. (1998). UCI repository of machine learning database. Inf. Comput. Sci., Univ. California, Dept., Irvine.[Online]. Available: http://www. ics. uci. edu/mlearn/MLRepository. html. Bloehdorn, S., & Hotho, A. (2004). Boosting for text classification with semantic features. Proc. of the Mining for and from the Semantic Web Workshop at KDD, 2004. Blunsom, P. (2004). Hidden Markov Models. Retrieved on July 15, 2008, from http://www.cs.mu.oz.au/460/2004/materials/hmm-tutorial.pdf. Brace-Govan, J. (2003). A method to track discussion forum activity: The Moderators'' Assessment Matrix. The Internet and Higher Education, 6(4), 303-325. Chawla, N. V., Japkowicz, N., & Kotcz, A. (2004). Editorial: special issue on learning from imbalanced data sets. ACM SIGKDD Explorations Newsletter, 6(1), 1-6. Church, K. W., & Gale, W. A. (1995). Inverse document frequency (IDF): A measure of deviations from Poisson. Proceedings of the Third Workshop on Very Large Corpora, 121–130. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273-297. Cristianini, N., & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-based Learning Methods (1st ed. pp. 189). Cambridge University Press. Dalziel, J. (2003). Implementing Learning Design: The Learning Activity Management System (LAMS). on ASCILITE (pp. 1-10). Do, M. N. (2003). Fast approximation of Kullback-Leibler distance for dependence trees and hidden Markov models. Signal Processing Letters, IEEE, 10(4), 115-118. Dougiamas, M., & Taylor, P. C. (2002). Interpretive analysis of an internet-based course constructed using a new courseware tool called Moodle. 2 nd Conference of HERDSA (The Higher Education Research and Development Society of Australasia), 7-10. Dragomir, R., Weiguo, R., & Zhu, F. (2001). Webinessence: A personalized web-based multidocument summarization and recommendation system. Retrieved on Dec. 3, 2007, from http://citeseer.ist.psu.edu/dragomir01webinessence.html. Fawcett, T., & Provost, F. (1997). Adaptive Fraud Detection. Data Mining and Knowledge Discovery, 1(3), 291-316. François, J. M. (2005). Jahmm–A HMM implementation in Java. 2005. Garrison, Anderson, & Archer. (1999). Critical Inquiry in a Text-Based Environment: Computer Conferencing in Higher Education. The Internet and Higher Education, 2(2-3), 87-105. doi: 10.1016/S1096-7516(00)00016-6. Garrison, D. R., Anderson, T., & Archer, W. (2001). Critical thinking and computer conferencing: A model and tool to assess cognitive presence. American Journal of Distance Education, 15(1), 7-23. Grant, C. A., & Sleeter, C. E. (2006). Turning on Learning: Five Approaches for Multicultural Teaching Plans for Race, Class, Gender and Disability. Jossey-Bass, An Imprint of Wiley, 352. Hewitt, J. (2004). An exploration of community in a knowledge forum classroom: an activity system analysis. Designing for Virtual Communities in the Service of Learning, 210-238. Home - LAMS Documents - Confluence. Retrieved on Jan. 9, 2008, from http://wiki.lamsfoundation.org/display/lamsdocs/Home. Hornick, M. F., Marcadé, E., & Venkayala, S. (2006). Java Data Mining: Strategy, Standard, and Practice: A Practical Guide for architecture, design, and implementation (1st Ed., pp. 544). Morgan Kaufmann. Huang, X., & Hon, H. W. (2001). Spoken Language Processing: A Guide to Theory, Algorithm, and System Development. Prentice Hall PTR Upper Saddle River, NJ, USA. IWS. (2006). Taiwan Internet and Telecommunications Market Reports. Retrieved on Apr. 18, 2008, from http://www.internetworldstats.com/asia/tw.htm. Japkowicz. (2000). Learning from imbalanced data sets: a comparison of various strategies. AAAI Workshop on Learning from Imbalanced Data Sets, 00-05. Japkowicz, & Stephen. (2002). The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5), 429-449. Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, 2, 1137–1145. Kosala, R., & Blockeel, H. (2000). Web mining research: a survey. ACM SIGKDD Explorations Newsletter, 2(1), 1-15. Krishnamurthy, V., & Moore, J. B. (1993). On-line estimation of hidden Markov model parameters based on the Kullback-Leibler information measure. IEEE Transactions on Signal Processing, 41(8), 2557-2573. Krogh''f, A., & Brown, I. (1994). Hidden Markov Models in Computational Biology. J. Mol. Bioi, 235, 1501-1531. Kubat, M., Holte, R. C., & Matwin, S. (1998). Machine Learning for the Detection of Oil Spills in Satellite Radar Images. Machine Learning, 30(2), 195-215. Lewis, D. D., & Catlett, J. (1994). Heterogeneous uncertainty sampling for supervised learning. Proceedings of the Eleventh International Conference on Machine Learning, 148–156. Ma, W., & Chen, K. (2003). Introduction to CKIP Chinese word segmentation system for the first international Chinese Word Segmentation Bakeoff. (pp. 168-171). Sapporo, Japan: Association for Computational Linguistics. Mazzolini, M. (2007). When to jump in: The role of the instructor in online discussion forums. Computers & Education, 49(2), 193-213. Mitchell, T. (1997). Machine Learning (pp. 52-78). The McGraw-Hill Companies, Inc. Moodle (2007) - A Free, Open Source Course Management System for Online Learning. Retrieved on Nov. 7, 2007, from http://moodle.org/. Murthy, S. K. (1998). Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, 2(4), 345-389. Nickerson, Japkowicz, & Milios. (2001). Using unsupervised learning to guide re-sampling in imbalanced data sets. Proceedings of the Eighth International Workshop on AI and Statitsics, 261–265. Papert, S. (1991). Situating Constructionism. Constructionism, 1-11. Pena-Shaff, J. B., & Nicholls, C. (2004). Analyzing student interactions and meaning construction in computer bulletin board discussions. Computers & Education, 42(3), 243-265. Peng, F., Huang, X., Schuurmans, D., & Wang, S. (2003). Text Classification in Asian Languages without Word Segmentation. Proceedings of the sixth international workshop on Information retrieval with Asian languages-Volume 11, 41-48. Platt, J. (1999a). Fast training of support vector machines using sequential minimal optimization. Advances in Kernel Methods-Support Vector Learning, 185–208. Platt, J. C. (1999b). Fast training of support vector machines using sequential minimal optimization, Advances in kernel methods: support vector learning. MIT Press, Cambridge, MA. Quinlan, J. R. (1996). Improved Use of Continuous Attributes in C4.5. Journal of Aritficial Intelligent Research, 4(1), 77-90. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81-106. Quinlan, J. R. (1993). C4. 5: Programs for Machine Learning. Morgan Kaufmann. Rabiner, L., & Juang, B. (1986). An introduction to hidden Markov models. ASSP Magazine, IEEE, 3(1), 4-16. Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications inspeech recognition. Proceedings of the IEEE, 77(2), 257-286. Rosen, L. (2008). Open Source Licensing: Software Freedom and Intellectual Property Law. Free software license. Retrieved on Apr. 14, 2008, from http://en.wikipedia.org/wiki/Free_software_license. Rourke, L., Anderson, T., Garrison, D. R., & Walter, A. (1999). Assessing Social Presence In Asynchronous Text-based Computer Conferencing. Journal of Distance Education, 14(2). Rovai, A. P. (2000). Building and sustaining community in asynchronous learning networks. The Internet and Higher Education, 3(4), 285-297. Schrire, S. (2003). A Model for Evaluating the Process of Learning in Asynchronous Computer Conferencing. Journal of Instruction Delivery Systems, 17(1), 6-12, . Scott, S., & Matwin, S. (1999). Feature engineering for text classification. Proceedings of ICML-99, 16th International Conference on Machine Learning, 379–388. Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34(1), 1-47. Sudman, D., Ulowetz, J., Singhi, D., & Pajerski, M. (1997). Apparatus and method for generating and presenting an audiovisual lesson plan. Google Patents. Vapnik, V. N. (2000). The Nature of Statistical Learning Theory. Springer. Welch, L. R. (2003). Hidden markov models and the baum-welch algorithm. IEEE Information Theory Society Newsletter, 53(4). Witten, I. H., & Frank, E. (2005). Data Mining: Practical Machine Learning Tools and Techniques, Second Edition (2nd Ed., pp. 560). Morgan Kaufmann. Yang, S. C., & Tung, C. (2007). Comparison of Internet addicts and non-addicts in Taiwanese high school. Computers in Human Behavior, 23(1), 79-96. doi: 10.1016/j.chb.2004.03.037. Yang, Y., & Pedersen, J. O. (1997). A comparative study on feature selection in text categorization. Proceedings of the Fourteenth International Conference on Machine Learning, 97, 412-420. Yoon, Lee, & Lee. (2005). Systematic Construction of Hierarchical Classifier in SVM-Based Text Categorization. Natural Language Processing – IJCNLP 2004. Retrieved on Jan. 15, 2008, from http://www.springerlink.com/content/9f0r032myrdwvke4/fulltext.pdf.
|