|
REFERENCES
[1] C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett., vol. 80, pp. 1088-1090, 2002. [2] Noriyoshi Yamauchi, Jean-Jacques J. Hajjar, and Rafael Reif, “Polysilicon Thin-Film Transistors with Channel Length and Width Comparable to or Smaller than the Grain Size of the Thin Film,” IEEE Trans. Electron Devices, vol. 38, pp. 55-60, 1991. [3] Chester C. Li, Hiroyuki Ikeda, Takahide Inoue, and Ping K. Ko, “A Physical Poly-Silicon Thin Film Transistors Model for Circuit Simulations,” IEDM Technical Digest, pp. 497-500, 1993. [4] 陳志強, “LTPS低溫複晶矽顯示器技術,” 全華科技圖書股份有限公司。 [5] Teruhiko Yamazaki, Hideaki Kawakami, and Hiroo Hori, “Color TFT liquid crystal displays,” Semiconductor Equipment and Materials International. [6] M. J. Powell, “The physics of amorphous-silicon thin film transistors,” IEEE Trans. Electron Devices, vol. 36, pp. 2753-2763, 1989. [7] Sang Wook Lee, Kyu Sik Cho, Byung Kwon Choo, and Jin Jang, “Copper gate hydrogenated amorphous silicon TFT with thin buffer layers,” IEEE Electron Device Lett. vol. 23, pp. 324-326, June 2002. [8] W.H. Lee, B. S. Cho, B. J. Kang, H. J. Yang, J. G. Lee, G. S. Woo, S. W. Lee, J. Jang, G. S. Chae, and H. S. Soh, “A self-passivated Cu(Mg) gate electrode for an amorphous silicon thin-film transistor,” Appl. Phys. Lett., vol. 79, pp. 3962-3964, 10 December 2001. [9] J. R. Lloyd, J. Clemens, and R. Snede, “Copper metallization reliability,” Microelectron. Reliab., vol. 39, pp. 1595-1602, 1999. [10] M. Ikeda, M. Ogawa, and K. Suzuki, “Low resistance copper address line for TFT-LCD,” in Proc. Japan, Display ’89, pp. 498-501, 1989. [11] J. H. Lan and J. Kanicki, “Planarized copper gate hydrogenated amorphous-silicon thin-film transistors for AM-LCDs,” IEEE electron Device Lett., vol. 20, pp. 129-131, Mar. 1999. [12] S, Sivoththaman, R. Jeyakumar, L. Ren, and A. Nathan, “Characterization of low permittivity (low-k) polymeric dielectric films for low temperature device integration,” J. Vac. Sci. Technol.A, vol. 20, pp. 1149-1151, 2002. [13] T. Inoue, T. Ohsuna, Y. Obara, Y. Yamamoto, M. Yamamoto, M. Satoh, and Y. Sakurai, “Intermediate Amorphous Layer Formation Mechanism at the Interface of Epitaxial CeO2 Layers and Si Substrates,” Jpn. J. Appl. Phys. Part 1, vol. 32, pp. 1765-1767, 1993. [14] L. Manchanda and M. Gurvitch, “Yttrium oxide/silicon dioxide: a new dielectric structure for VLSI/ULSI circuits,” IEEE Electron Device Lett., vol. 9, pp. 180-182, 1988. [15] K. P. Pande, V. K. R. Nair, and D. Gutierrez, “Plasma enhanced metal-organic chemical vapor deposition of aluminum oxide dielectric film for device applications,” J. Appl. Phys., vol. 54, pp. 5436-5440, 1983. [16] P. K. Roy and I. C. Kizilyalli, “Stacked high-ε gate dielectric for gigascale integration of metal–oxide–semiconductor technologies,” Appl. Phys. Lett., vol. 72, pp. 2835-2837, 1998. [17] C. S. Kang, R. Choi, H. J. Cho, Y. H. Kim, and J. C. Lee, “Scaling down of ultrathin HfO2 gate dielectrics by using a nitrided Si surface,” J. Vac. Sci. Technol. B, vol. 22, pp. 916-919, 2004. [18] J. Koo, Y. Kim, and H. Jeon, “ZrO2 Gate Dielectric Deposited by Plasma-Enhanced Atomic Layer Deposition Method,” Jpn. J. Appl. Phys. Part 1, vol. 41, pp. 3043-3046, 2002. [19] H. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates,” Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996. [20] Y. Jeon, B. H. Lee, K. Zawadzki, W. Qi, and J. C. Lee, “Effect of Barrier Layer on the Electrical and Reliability Characteristics of High-k Gate Dielectric Films,” Tech. Dig. Int. Electron Devices Meet., pp. 797-800, 1998. [21] R. M. Wallace, University of North Texas. [22] Jack C. Lee, “Ultra-thin gate dielectrics and High-k dielectrics,” IEEE EDS vanguard series of independent short courses. [23] T. Kamada, M. Kitagawa, M. Shibuya, and T. Hirao, “Structure and Properties of Silicon Titanium Oxide Films Prepared by Plasma-Enhanced Chemical Vapor Deposition Method,” Jpn. J. Appl. Phys. vol. 30, pp. 3594-3596, 1991. [24] H. Shin, M. R. D. Guire, and A. H. Heuer, “Electrical properties of TiO2 thin films formed on self-assembled organic monolayers on silicon,” J. Appl. Phys., vol. 83, pp. 3311-3317, 1998. [25] H. Yamashita, S. Kawasaki, Y. Ichihashi, M. Harada, M. Takeuchi, M. Anpo, G. Stewart, M. A. Fox, C. Louis, and M. Che, “Characterization of Titanium-Silicon Binary Oxide Catalysts Prepared by the Sol-Gel Method and Their Photocatalytic Reactivity for the Liquid-Phase Oxidation of 1-Octanol,” J. Phys. Chem. B, vol. 102, pp. 5870-5875, 1998. [26] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003. [27] O. Harizanov, and A. Harizanova, “Development and investigation of sol–gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000. [28] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin films on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003. [29] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001. [30] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin films by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000. [31] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide films produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998. [32] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 films prepared by reactive evaporation,” Thin Solid Films, vol. 371, pp. 218-224, 2000. [33] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002. [34] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 films sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002. [35] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-films prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002. [36] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997. [37] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000. [38] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide films obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000. [39] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002. [40] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 films prepared by pulsed laser deposition,” Thin Solid Films, vol. 401, pp. 88-93, 2001. [41] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-films by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002. [42] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002. [43] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-films,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001. [44] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-films produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997. [45] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-films on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002. [46] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide films prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000. [47] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 films prepared by liquid-phase deposition,” Thin Solid Films, vol. 371, pp. 148-152, 2000. [48] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998. [49] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997. [50] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002. [51] E. P. Gusev, H.-C. Lu, E. L. Garfunkel, T. Gustafsson, M. L. Green, “Growth and charachterization of ultrathin nitrided silicon oxide films,” IBM J. Res. Develop., vol. 43, pp. 265-286, 1999. [52] K. A. Ellis, and R. A. Buhrman, “Furnace gas-phase chemistry of silicon oxyniridation in N2O,” Appl. Phys. Lett., vol. 68. pp. 1696-1698, 1996. [53] T. Y. Chu, W. T. Ting, J. Ahn, and D. L. Kwong, “Thickness and compositional non-uniformities of ultrathin oxides grown by thermal oxidation of silicon in N2O,” J. Electrochem. Soc., vol. 138, p. L13, 1991. [54] M. J. Hartig, and P. J. Tobin, “A model for the gas-phase chemistry occurring in a furmace N2O oxynitride process,” J. Electrochem. Soc., vol. 143, pp. 1753-1762, 1996. [55] M. I. B. Bernardi, E. J. H. Lee, P. N. Lisboa-Filho, E. R. Leite, E. Longo, and J. A ,Varela, “TiO2 Thin Film Growth Using by the MOCVD Method,” Mat. Res., vol. 4, pp. 223-226, 2001. [56] S. M. Sze, “Physics of Semiconductor Devices Physics and Technology,” (Wiley, New York,) 1986, Chap. 8. [57] E. S. Fishburne, and R. Edse, “Shock-tube of nitrous oxide decomposition,” J. Chem. Phys., vol. 41, pp. 1297-1304, 1964. [58] L. I. Maissel and R. Glang 1970 Handbook of Thin Film Technology (New York: McGrew-Hill) [59] M. Hiratani, M. Kadoshima, T. Hirano, Y. Shimamoto, Y. Matsui, T. Nabatame, K. Torii, and S. Kimura, “Ultrathin titanium oxide film with a rutile-type structure,” Appl. Surf. Sci., vol. 207, pp. 13-19, 2003. [60] S. D. Mo, and W. Y. Ching, “Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp.13023-13032, 1995. [61] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. kim, W. L. Glasfelter, and J. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997. [62] G. Liu, M. Li, Y. Zhang, and Y. Zhou, “Cracking behavior of oxide scale formed on Ti3SiC2-based ceramic,” Mater. Sci. Eng. A, vol. 360, pp. 408-414, 2003 [63] J. H. Chae, J. Y. Lee, and S. W. Kang, “Measurement of thermal expansion coefficient of poly-Si using microgauge sensors,” Sensors and Actuators A: Physical, vol. 75, pp. 222-229, 1999. [64] M. I. Vexler, S. E. Tyaginov, and A. F. Shulekun, “Determination of the hole effective mass in thin silicon dioxide film by means of an analysis of characteristics of a MOS tunnel emitter transistor,” J. Phys.: Condens. Matter, vol. 17, pp. 8057-8068, 2005. [65] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing”, J. Appl. Phys., vol. 63, pp. 5776-5793, 1988. [66] M. K. Lee, J. J. Huang, and Y. H. Hung, “Variation of Electrical Characteristics of Metallorganic Chenical Vapor Depositied TiO2 Films by Postmetallization,” J. Electrochem. Soc., vol. 11, pp. F190-F193, 2005. [67] I. Codreanu, and G. D. Boreman, “Integration of microbolometers with infrared microstrip antennas,” Infrared Physics & Technology, vol. 43, pp. 335-344, 2002. [68] R. H. Schmitt, E. L. Glove, and R. D. Brown, “The equivalent conductance of the hexafluorocomplexes of group IV (Si, Ge, Sn, Ti, Zr, Hf), ” J. Am. Chem. Soc., vol. 82, pp. 5292-5295, 1960. [69] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol.8, pp. 2019-2024, 1998. [70] M. K. Lee, W. H. Shieh, C. M. Shih and K. W. Tung, “High-Quality Nitrogen-Doped Fluorinated Silicon Oxide Films Prepared by Temperature-Difference-Based Liquid-Phase Deposition,” J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003. [71] Y. Gao, Y. Masuda, T. Yonezawa, and K. Koumoto, “Site-Selective Deposition and Micropatterning of SrTiO3 Thin Film on Self-Assembled Monolayers by the Liquid Phase Deposition Method,” Chem. Mater., vol. 14, pp. 5006-5014, 2002. [72] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural an optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001. [73] K. Matsumura, S. H. Hyon, N. Nakajima, C. Peng, H. Iwata, and Sadami Tsutsumi, “Adhesion between poly(ethylene-co-vinyl alcohol) (EVA) and titanium,” J. Biomed. Mater. Res. Part A, vol 60, pp. 309 - 315, 2002. [74] F. L. Toma, G. Bertrand, S. Begin, C. Meunier, O. Barres, D. Klein, and C. Coddet, “Microstructure and environmental functionalities of TiO2-supported photocatalysts obtained by suspension plasma spraying,” Appl. Catal. B: Environ., vol. 68, pp. 74-84, 2006. [75] T. P. Ma, “Metal-oxide-semiconductor gate oxide reliability and the role of fluorine,” J. Vac. Sci. Technol. A, vol. 10, pp. 705-712, 1992. [76] M. K. Lee, J. J. Huang, and T. S. Wu, “Low Leakage Current Fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. solid-State Lett., vol. 8,.pp. F8-F11, 2005. [77] C. J. Huang, “Proper Annealing for Enhanced Quality of Silicon Dioxide Thin Film on Gallium Arsenide,” Electrochem. and solid-State Lett., vol. 4, pp. F21-F23, 2001. [78] D. F. Cox, T. B. Fryberger, and S. Semancik, “Oxygen vacancies and defect electronic states on the SnO2 (100)-1x1 surface,” Phys. Rev. B, vol. 38, pp.2072-2085 1988. [79] M. K. Kee, K. W. Tung, and C. M. Yu, “Deposition of High Dielectric Barium-Doped Titanium Silicon Oxide Films on Silicon Using Hexafluorotitanic Acid and Barium Nitrate,” Electrochem. Solid-State Lett., vol. 7, pp. B42-B44, 2004. [80] D. Brassard, and M. A. E. Khakani, “Plused-laser deposition of high-k titanium silicate thin films,” J. Appl. Phys., vol. 98, p. 054912, 2005. [81] D. Y. Cho, K. S. Park, B. H. Choi, S. J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, R. Jung, and J. C. Lee, “Control of silicidation in HfO2/Si(100) interface,” Appl. Phys. Lett., vol. 86, p 041913, 2005. [82] J. Muto, H. Nagahama, and T. Hashimoto, “Microinfrared reflection spectroscopic mapping: application to the detection of hydrogen-related species in natural quartz,” Journal of Microscopy, vol. 216, pp. 222-228, 2004. [83] P. M. Kumar, S. Badrinarayanan, and M. Sastry, “Nanocrystalline TiO2 studied by optical, FTIR and X-ray photoelectron spectroscopy: correlation to presence of surface states,” Thin Solid Films, vol. 358, pp. 122-130, 2000. [84] J. Wang, B. Zou, and M. A. El-Sayed, “Comparison between the polarized Fourier-transform infrared specta of aged porous silicon and amorphous silicon dioxide films on Si (100) surface,” J. Molecular Struct., vol. 508, pp. 87-96, 1999. [85] R. Outemzabet, M. Cherkaoui, N. Gabouze, F. Ozanam, N. Kesri, and J. N. Chazalviel, “Origin of the anisotropy in the anodic dissolution of silicon,” J. Electrochem. Soc., vol. 153, pp. C108-C116, 2006. [86] J. Wang, L. Song, B. Zou, and M. A. El-Sayed, “Time-resolved Fourier-transform infrared and visible luminescence spectroscopy of photoexcited porous silicon,” Pyhs. Rev. B, vol. 59, pp. 5026-5031, 1999. [87] C. K. Jung, D. C. Lim, H. G. Jee, M. G. Park, S. J. Ku, K. S. Yu, B. Hong, S. B. Leea, and J. H. Booa, “Hydrogenated amorphous and crystalline SiC thin films grown by RF-PECVD and thermal MOCVD; comparative study of structural and optical properties,” Surf. Coat. Technol., vol. 171, pp. 46-50, 2003. [88] M. K. Lee, H. C. Lee, and C. M. Hsu, “Characteristics of liquid-phase-deposited TiO2 film on hydrogenated amorphous silicon,” Jpn. J. Appl. Phys., vol. 45, pp. 7617-7620, 2006. [89] Y. He, R. Hattori, and J. Kanicki, “Current-source a-Si:H thin-film transistor circuit for active-matrix organic light-emitting displays,” IEEE electron Device Lett., vol. 21, pp. 590-592, 2000. [90] Y. D. Son, K. D. Yong, D. S. Bae, J. Jang, M. Hong, and S. J. Kim, “Depletion-mode TFT made of low-temperature poly-Si,” IEEE Trans. Electron Devices, vol. 53, pp. 1260-1262, 2006. [91] K. M. Lim, H. C. Kang, and M. Y. Sung, “A study on the poly-Si TFT and novel pixel structure for low flicker,” Microelectronics, vol. 30, pp. 905-910, 1999. [92] J. P. Colinge, “Reduction of kink effect in thin-film SOI MOSFET’s,” IEEE electron Device Lett., vol. 9, pp. 97-99, 1988.
|